首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2021-01-25
72
问题
设
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)设ξ
2
=(x
1
,x
2
,x
3
)
T
,解方程组Aξ
2
=ξ
1
,由 [A,ξ
1
] [*] 得x
1
=-x
2
,x
3
=1-2x
2
(x
2
任意).令自由未知量x
2
=-c
1
,则得 ξ
2
[*] 其中c
1
为任意常数. 设ξ
3
=(y
1
,y
2
,y
3
)
T
,解方程组A
2
ξ
2
=ξ
1
,由 [A
2
,ξ
1
] [*] 得y
1
=-[*]-y
2
(y
2
,y
3
任意).令自由未知量y
2
=c
2
,y
3
=c
3
,则得 [*] 其中c
2
,c
3
为任意常数. (Ⅱ)3个3维向量ξ
1
,ξ
2
,ξ
3
线性无关的充要条件是3阶行列式D=|ξ
1
ξ
2
ξ
3
|≠0.而 [*] 所以ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Ax4777K
0
考研数学三
相关试题推荐
以下极限等式(若右端极限存在,则左端极限存在且相等)成立的个数是()
设f(x)连续,则在下列变上限积分中,必为偶函数的是()
[2015年]设矩阵若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
[2001年]设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P(|X+Y|≥6)≤_________.
[2003年]设随机变量X的概率密度为F(x)是X的分布函数,求随机变量Y=F(X)的分布函数.
[2011年]设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是().
[2005年]设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该
[2005年]从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P(Y=2)=___________.
设X1,X2,…,X100相互独立且在区间[-1,1]上同服从均匀分布,则由中心极限定理≈______.
随机试题
A.A群链球菌B.B群链球菌C.D群链球菌D.α一溶血性链球菌E.β一溶血性链球菌对杆菌肽敏感的是
患者,女,18岁。感冒后身热不甚,干咳无痰,咽干口渴,右脉数大。治疗应首选
组成核酸分子的碱基主要有A.2种B.3种C.4种D.5种E.6种
A.第2趾内侧趾甲根角旁约0.1寸B.第2趾外侧趾甲根角旁约0.1寸C.第4趾内侧趾甲根角旁约0.1寸D.第4趾外侧趾甲根角旁约0.1寸E.第3趾内侧趾甲根角旁约0.1寸足窍阴穴位于
设备安装调试合同供货人的工作是( )。
某项目部承接了2.5万t级集装箱船高桩梁板式码头预制构件的制作任务。问题:如何选择预制场地?
小学班主任王老师通过阅读其他老师的教学札记,学习到很多新的教学知识和教学观念,这种教学反思方法属于()。
{an}是一个等差数列,a3+a7-a10=8,a11-a4=4,则数列前13项之和是()。
Imagineeatingeverythingdeliciousyouwant—withnoneofthefat.Thatwouldbegreat,wouldn’tit?New"fakefat"products
Itwouldbefarbetterifcollectorscouldbepersuadedtospendtheirtimeandmoneyinsupportof_________archaeologicalrese
最新回复
(
0
)