首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设则在实数域上与A合同的矩阵为( ).
[2008年] 设则在实数域上与A合同的矩阵为( ).
admin
2019-04-15
81
问题
[2008年] 设
则在实数域上与A合同的矩阵为( ).
选项
A、
B、
C、
D、
答案
D
解析
解一 令
由
知,A的特征值λ
1
=3,λ
2
=-1,即A的正、负惯性指数都为1,于是|A|=λ
1
λ
2
<0,但|A
1
|>0,|A
2
|0,|A
3
|>0,可见(A)、(B)、(C)中矩阵的正、负惯性指数与A的都不同,因而A
1
,A
2
,A
3
与A都不合同.仅(D)入选.
解二 因
故A与A
4
的特征值相同且其重数也相同,故A与A
4
相似.又A与A
4
为同阶实对称矩阵,由命题2.6.4.2知,A与A
4
必合同.仅(D)入选.
解三 由两个矩阵A,B合同的定义知,存在可逆矩阵C,使B=C
T
AC,则
|B|=|A||C
T
||C|=|A||C|
2
,
因|C|
2
>0,故A与B合同必有|A|与|B|同号.由解一知,
|A|<0, |A
1
|>0, |A
2
|>0, |A
3
|>0,
而|A
4
|<0,故|A|与|A
4
|同号,由命题2.6.4.4(2)知,A与A
4
合同,仅(D)入选.
解四 用合同变换判别之.因
由命题2.6.4.3知,A与A
4
合同,且有P
T
AP=A
4
,其中
事实上,有
注:命题2.6.4.2 设A,B为实对称矩阵,若A,B相似,则A,B合同,反之未必成立.若A,B是一般n阶矩阵(不一定是实对称),则下述结论成立.
命题2.6.4.3 A与B合同的充要条件是A经过有限次相同的初等行变换和初等列变换得到B.
转载请注明原文地址:https://kaotiyun.com/show/k7P4777K
0
考研数学三
相关试题推荐
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设周期为4的函数f(x)处处可导,且,则曲线y=f(x)在(-3,f(-3))处的切线为______.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设X1,X2,…,Xn(n>2)为取自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi一,i=1,2,…,n。求:(Ⅰ)Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)Yi与Yn的协方差Cov(Y1,Yn)。
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
已知随机变量X1,X2,X3相互独立,且都服从正态分布N(0,σ2),如果随机变量Y=X1X2X3的方差D(Y)=,则σ2=________。
假设随机变量x与y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
随机试题
某企业上年和本年的流动资产平均占用额分别为2100万元和2800万元,流动资产周转率分别为7次和9次.则本年比上年的销售收入增加了()。
在按摩开始和结束时,对基本反射区的按摩不少于()分钟。
配制氯化钠等渗溶液500ml(1%氯化钠溶液的冰点降低度为0.58℃),需用氯化钠为
A.皮肤癌B.大肠癌C.喉癌D.鼻咽癌E.小细胞肺癌转移趋向明显的是
子宫输卵管造影的禁忌证是
A、HMG-CoAB、β-羟丁酸C、琥珀酰CoAD、磷酸二羟丙酮E、β-羟脂酰CoA甘油及糖分解代谢的共同产物是
A.麻痹性肠梗阻B.单纯性肠梗阻C.痉挛性肠梗阻D.绞窄性肠梗阻E.机械性肠梗阻急性小肠扭转一般应及时手术治疗,因为其易发生
杜威提出“在做中学”实质上强调了学生活动。()
下列有关冗余数据的说法,错误的是()。
期货合约与远期现货合约的根本区别在于()。
最新回复
(
0
)