首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,且A2=A,R(A)=r,则A的全部特征值为_______,行列式|2E—3A|=_______。
设A为n阶实对称矩阵,且A2=A,R(A)=r,则A的全部特征值为_______,行列式|2E—3A|=_______。
admin
2019-03-23
61
问题
设A为n阶实对称矩阵,且A
2
=A,R(A)=r,则A的全部特征值为_______,行列式|2E—3A|=_______。
选项
答案
λ
1
=λ
2
= … =λ
r
=1,λ
r+1
=λ
r+2
= … =λ
n
=0;(—1)
r
2
n—r
解析
设λ是矩阵A的任意一个特征值,α是属于λ的特征向量,即Aα=λα。
在等式A
2
=A两边右乘α,得A
2
α=Aα,也就是λ
2
α=λα,即(λ
2
—λ)α=0。因α≠0,故有λ
2
—λ=0,可得A的特征值λ=0或1。
又已知A为实对称矩阵,则必可相似对角化,而A的秩R(A)=r,因此A的特征值为
λ
1
=λ
2
= … =λ
r
=1,λ
r+1
=λ
r+2
= … =λ
n
=0,
进而可知矩阵2E—3A的特征值为
μ
1
= … =μ
r
=2—3×1= —1,μ
r+1
= … =μ
n
=2—3×0=2,
故 |2E—3A|=(—1)
r
2
n—r
。
转载请注明原文地址:https://kaotiyun.com/show/4HV4777K
0
考研数学二
相关试题推荐
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
设α1,α2,…,αs,β都是n维向量,证明:
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
已知a,b,c不全为零,证明方程组只有零解.
已知齐次方程组同解,求a,b,c.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
求此齐次方程组的一个基础解系和通解.
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
随机试题
超常规发展战略方案
下列哪种物质脱下的氢不进入NlADH呼吸链?
小儿缺铁性贫血的预防要点最主要是
成人牙周炎与慢性龈炎的不同点为()
令每月工作时间为X(天),月收入为Y(百元),已知:∑Y=196,∑X=118,∑Y2=7694,∑X2=2790,∑XY=4633,n=5根据上述资料请回答:随机误差项方差的估计量公式()。
管理控制层所需要的数据来源可以有以下哪些渠道()。
黄龙景区的黄龙寺是藏传佛教的寺院。()
发泄:指通过激烈的情绪表达而使情绪稳定的一种方法。根据上述定义,下列不属于发泄的行为是()。
Whatisitaboutwalking,inparticular,thatmakesitsoamenabletothinkingandwriting?Theanswerbeginswithchangestoou
下列关于Windows2003系统下WWW服务器配置的描述中,正确的是()。
最新回复
(
0
)