首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a-t)dt,证明: F(2a)一2F(a)=f2(a)一f(0)f(2a).
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a-t)dt,证明: F(2a)一2F(a)=f2(a)一f(0)f(2a).
admin
2015-08-14
39
问题
设函数f(x)有连续导数,F(x)=∫
0
x
f(t)f’(2a-t)dt,证明: F(2a)一2F(a)=f
2
(a)一f(0)f(2a).
选项
答案
F(2a)一2F(a)=∫
0
2a
f(t)f’(2a—t)dt一2∫
0
a
f(t)f’(2a一t)dt =∫
a
2a
f(t)f’(2a-t)dt一∫
0
a
f(t)f’(2a-t)dt, 其中∫
a
2a
f(t)f’(2a—t)dt=f
2
(a)一f(0)f(2a)+∫
a
2a
f(2a—t)f’(t)dt,所以 原式=f
2
(a)一f(0)f(2a)+∫
a
2a
f(2a一t)f’(t)dt一∫
0
a
f(t)f’(2a-t)dt,又∫
a
2a
f(2a—t)f’(t)dt[*]∫
0
a
f(u)f’(2a-u)du=∫
0
a
f(t)f’(2a-t)dt,所以, F(2a)一2F(a)=f
2
(a)一f(0)f(2a).
解析
转载请注明原文地址:https://kaotiyun.com/show/4M34777K
0
考研数学二
相关试题推荐
设f(x)=ln|x|/|x-1|sinx,求f(x)的间断点,并判断其类型.
π/4
设A为三阶正交矩阵,且|A|<0,|B-A|=-4,则|E-ABT|=________.
设A为n阶矩阵且r(A)=n-1.证明:存在常数k,使得(A*)2=kA*.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明:PQ可逆的充分必要条件是αTA-1α≠b.
设A=B为三阶矩阵,r(B*)=1且AB=0,则t=________.
设α1=则α1,α2,α3,α4的一个极大线性无关组为________,其余的向量用极大线性无关组表示为________.
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
设随机变量X的概率密度为,其中a,b为常数.记Φ(x)为N(0,1)的分布函数.若在x=1处f(x)取得最大值,则P{1-<X<1+}=()
设f(x)在x=0的某邻域内有二阶连续导数,且f’(0)=f”(0)=0,,则下列选项正确的是()
随机试题
A.通气功能减低B.肺内分流、V/Q比例失调C.弥散功能障碍D.耗氧量增加E.支气管痉挛慢性阻塞性肺病患者出现呼吸衰竭
下列哪项不是溃疡性结肠炎常见的并发症
组织为了实现其目标而有计划、有组织、多层次、多渠道地组织其成员从事学习和训练,从而不断提高成员的知识和技能,改善成员的工作态度,激发成员创新意识的管理活动称为()活动。
下列费用属于技术服务费的有()。
甲股份有限公司(以下简称甲公司)为上市公司,2010年至2012年与长期股权投资有关资料如下:(1)2010年1月20日,甲公司与乙公司签订购买乙公司持有的丙公司(非上市公司)60%股权的合同。合同规定:以丙公司2010年6月30日评估的可辨认净资产价值
甲公司主要从事小型电子消费品的生产和销售。A注册会计师负责审计甲公司2012年度财务报表。资料一:A注册会计师在审计工作底稿中记录了所了解的甲公司情况及其环境,部分内容摘录如下:(1)甲公司于2012年初完成了部分主要产品的更
下列关于公安机关的职责表述正确的是()。
下列关于民事法律行为的表述,错误的是()
Humansare______,whichenablesthemtomakedecisionsevenwhentheycan’tjustifywhy.
LandfillsYouhavejustfinishedyourmealatafastfoodrestaurantandyouthrowyouruneatenfood,foodwrappers,drinkc
最新回复
(
0
)