首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( )
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( )
admin
2021-01-25
121
问题
设向量组α
1
,α
2
,α
3
线性无关,则下列向量组线性相关的是( )
选项
A、α
1
-α
2
,α
2
-α
3
,α
3
-α
1
。
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
。
C、α
1
-2α
2
,α
2
-2α
3
,α
3
-2α
1
。
D、α
1
+2α
2
,α
2
+2α
3
,α
3
+2α
1
。
答案
A
解析
方法一:根据线性相关的定义,若存在不全为零的数k
1
,k
2
,k
3
,使得k
1
α
1
+k
2
α
2
+k
3
α
3
=0成立,则称α
1
,α
2
,α
3
线性相关。因
(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
1
)=0,
故α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关,所以选择A。
方法二:因为
(α
1
+α
2
,α
2
+α
3
,α
3
+α
1
)=(α
1
,α
2
,α
3
)
=(α
1
,α
2
,α
3
)C
2
,且|C
2
|=
=2≠0。故C
2
是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积,C
2
右乘(α
1
,α
2
,α
3
)时,等价于作若干次初等变换,初等变换不改变矩阵的秩,故有r(α
1
+α
2
,α
2
+α
3
,α
3
+α
1
)=r(α
1
,α
2
,α
3
)=3。所以,α
1
+α
2
,α
2
+α
3
,α
3
+α
1
线性无关,排除B。
同理α
1
-2α
2
,α
2
-2α
3
,α
3
-2α
1
和α
1
+2α
2
,α
2
+2α
3
,α
3
+2α
1
都线性无关,排除C、D。综上知应选A。
转载请注明原文地址:https://kaotiyun.com/show/4Nx4777K
0
考研数学三
相关试题推荐
设,则当x→0时f(x)是x的
下列矩阵中,正定矩阵是()
设f(x)连续,则在下列变上限积分中,必为偶函数的是()
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
对于任意两事件A和B,与A∪B=B不等价的是().
设随机变量X的概率密度为以Y表示对X的三次独立重复观察中事件{X≤1/2)出现的次数,则P(Y=2)=____________.
求下列积分
(2000年)假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别为p1=18—2Q1,p2=12一Q2其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
随机试题
背景某非地震地区小区共有40栋砖混住宅楼工程,分两期组织流水施工,每期20栋。先期施工的20栋楼建成后不久,发现在纵墙的两端出现斜裂缝,多数裂缝通过窗口的两个对角,裂缝向沉降较大的方向倾斜,并由下向上发展。裂缝集中在墙体下部,向上逐渐减少,裂缝宽度下大上
我国法律文书发展的历史渊源流长,早在“秦墓竹简”中就出现了较为完备的勘验笔录()
2004年,中共十六届四中全会提出的战略任务是()
某成年男性出现疲倦,体重下降,机体免疫力下降,伴有伤口愈合不良,营养性水肿。血常规检查Hb<130g/L,血浆蛋白低于正常。此时最适宜采取的膳食措施是
级数
某建设项目设备及工器具购置费为600万元,建筑安装工程费为1200万元,工程建设其他费为100万元,建设期贷款利息为20万元,基本预备费率为10%,则该项目基本预备费为()万元。
某商业和办公楼项目,高29层,钢筋混凝土结构,建筑面积45000平方米,业主为某一房地产开发公司。该项目的概算总投资为23000万元。业主通过招标确定某一国内建筑施工企业为土建工程总承包单位,其合同总价为16000万元。该项目的钢结构和玻璃幕墙工程由业主指
企业的平均薪资等级是()。
人在经常训练后会很牢固地记住动作要点,这在运动技能中可以用什么机制来形容?()
设信道带宽为4000Hz,调制为4种不同的码元,根据Nyquist定理,理想信道的数据速率为(24)。
最新回复
(
0
)