首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( )
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( )
admin
2021-01-25
112
问题
设向量组α
1
,α
2
,α
3
线性无关,则下列向量组线性相关的是( )
选项
A、α
1
-α
2
,α
2
-α
3
,α
3
-α
1
。
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
。
C、α
1
-2α
2
,α
2
-2α
3
,α
3
-2α
1
。
D、α
1
+2α
2
,α
2
+2α
3
,α
3
+2α
1
。
答案
A
解析
方法一:根据线性相关的定义,若存在不全为零的数k
1
,k
2
,k
3
,使得k
1
α
1
+k
2
α
2
+k
3
α
3
=0成立,则称α
1
,α
2
,α
3
线性相关。因
(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
1
)=0,
故α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关,所以选择A。
方法二:因为
(α
1
+α
2
,α
2
+α
3
,α
3
+α
1
)=(α
1
,α
2
,α
3
)
=(α
1
,α
2
,α
3
)C
2
,且|C
2
|=
=2≠0。故C
2
是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积,C
2
右乘(α
1
,α
2
,α
3
)时,等价于作若干次初等变换,初等变换不改变矩阵的秩,故有r(α
1
+α
2
,α
2
+α
3
,α
3
+α
1
)=r(α
1
,α
2
,α
3
)=3。所以,α
1
+α
2
,α
2
+α
3
,α
3
+α
1
线性无关,排除B。
同理α
1
-2α
2
,α
2
-2α
3
,α
3
-2α
1
和α
1
+2α
2
,α
2
+2α
3
,α
3
+2α
1
都线性无关,排除C、D。综上知应选A。
转载请注明原文地址:https://kaotiyun.com/show/4Nx4777K
0
考研数学三
相关试题推荐
设A为n阶可逆矩阵,λ是A的一个特征值,则伴随矩阵A*的一个特征值是
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
[2015年]设矩阵若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
[2017年]已知矩阵则().
设随机变量X和Y相互独立且都服从正态分布N(0,32),而X1,X2,…,X9和Y1,Y2,…,Y9分别为来自总体X和Y的简单随机样本,则统计量服从___________分布,参数为____________.
设A,B,C三个事件两两独立,则A,B,C相互独立的充分必要条件是().
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{﹣1<X<4}≥a,则a的最大值为().
设f(x)连续,且f(1)=0,f’(1)=2,求极限
极限
随机试题
______(直到他完成使命)didherealizethathewasseriouslyill.
属于未代偿代谢性酸中毒的是
银翘散中配伍荆芥穗、淡豆豉的目的是
下列说法不正确的一项是()。
小儿神经性皮炎一直被认为是由母乳过敏引起的。但是,如果我们让患儿停止进食母乳而改用牛乳,他们的神经性皮炎并不能因此消失。因此,显然存在别的某种原因引起小儿神经性皮炎。下列哪项如果为真,最能支持上面的论证?
模块包含了一个声明区域和一个或多个子过程(Sub开头)或函数过程(以【】开头)。
ResponseTimeisCriticalYou,yesyou,areresponsibleforensuringthatyouareaninteresting,funpersontohave【C1】___
In2004,theAuburnHousingAuthoritybecamethefirstauthorityinMaineandoneofthefirstinthecountrytobansmokingin
A、Inarestaurant.B、Inashop.C、Inacinema.D、Inabank.A题目中的关键词是“comehereforlunch”,由此可以推断出对话应该发生在餐馆里,故选A。
Internetaddiction,likealcoholismordrugaddiction,isabehavioraladdiction,whichiscurablewithcorrecttreatmentprogra
最新回复
(
0
)