首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2018-07-27
27
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是B的n个行向量的转置向量,因此,由(Ⅰ)的已知基础解系可知 AB
T
=O 转置即得BA
T
=O 因此可知A
T
的n个列向量…即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为n,故(Ⅱ)的解空间的维数为2n-n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,故2n-r(A)=n,得r(A)=n,于是A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 yc
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
(c
1
,c
2
,…,c
n
为任意常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/4WW4777K
0
考研数学三
相关试题推荐
证明n维列向量α1,α2,…,αn线性无关的充要条件是
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
已知α1=(a,a,a)T,α2=(-a,a,b)T,α3=(-a,-a,-b)T线性相关,则a,b满足关系式_______.
已知f(x)=,证明f’(x)=0有小于1的正根.
设A是三阶实对称矩阵,r(A)=1,A2一3A一0,设(1,1,一1)T为A的非零特征值对应的特征向量.求A的特征值;
已知二维非零向量X不是二阶方阵A的特征向量.(1)证明X,AX线性无关;(2)若A2X+AX一6X=0,求A的特征值,并讨论A可否对角化.
设方阵A1与B1合同,A2与B2合同,证明:合同。
假设A是n阶方阵,其秩r(A)=r<n,那么在A的n个行向量中()
随机试题
票据行为的构成有()。
下列各选项中的()不属于行政许可行为。
WhenPetersonwasawayonbusiness,hisneighborgavehiswife________withthehousework.
要实施整体性发展,__________必然要求推行协商民主,__________整体性发展的核心要素或内在的统领性要素是整体利益,这种整体利益把不同的群体统合在一起,__________形成了促进整体性发展的强大动力。填入画横线部分最恰当的一项是:
A.昏迷B.脑膜刺激征明显C.脑脊液大多正常D.三偏征E.失语内囊区出血和血栓的共同表现是
(2009年)一平面简谐波在弹性媒质中传播,在某一时刻,某质元正处于其平衡位置,此时它的()。
建设银行D分行要求员工每年度要通过网络学习平台参加20课时的线上教育课程,其中职业素养10课时,专业技能10课时。可供选择的职业素养课程共8门,每门2课时;可供选择的专业技能课程共10门,其中2课时的有5门,1课时的有5门,问:可供选择的课程组合共有多少种
【2015年河南洛阳.单选】“一题多解,演绎推理”是()。
Becauseofimprovementsintechnology,peoplecouldbuymanynewkindsofproductsinAmericanstores,suchashomecomputers,m
Formostofus,thepurposeoftheholidaysistobringpeace,love,andgoodwilltowardsall.Yet,formany,theholidayseason
最新回复
(
0
)