首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2018-07-27
26
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是B的n个行向量的转置向量,因此,由(Ⅰ)的已知基础解系可知 AB
T
=O 转置即得BA
T
=O 因此可知A
T
的n个列向量…即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为n,故(Ⅱ)的解空间的维数为2n-n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,故2n-r(A)=n,得r(A)=n,于是A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 yc
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
(c
1
,c
2
,…,c
n
为任意常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/4WW4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
判断α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,-1,a+2,1)T,α4=(1,2,4,a+9)T的线性相关性.
设A是m×n矩阵,B是n×P矩阵,如AB=0,则r(A)+r(B)≤n.
判断如下命题是否正确:设无穷小un~vn(n→∞),若级数也收敛.证明你的判断.
已知f(x)=,证明f’(x)=0有小于1的正根.
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3),如果|A|=1,那么|B|=______.
已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=______.
设A是n阶实对称矩阵,AB+BTA是正定矩阵,证明A可逆.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
随机试题
缔约国就发展贸易关系中某项具体问题所达成的书面协议,是为补充解释修改而签订,该协议为()
()是由若干判断得出一个判断的思维形式。
患者女性,34岁,X线检查示右肺大面积实变,右肺查体不可能出现的体征是
皮肤紫纹是由于大量皮质醇促进蛋白质分解,抑制蛋白质合成,使机体处于负氮平衡状态所致。
下列各项咨询业务中,不属于注册咨询工程师(投资)执业范围的是()。
在下列关于对财务信息执行商定程序的说法中,正确的是( )。注册会计师执行的商定程序业务与执行鉴证业务存在很多方面的不同,其中包括( )。
A注册会计师计划测试X公司2014年销售交易是否真实。下列实质性程序获取的审计证据中,与证明销售交易的真实性最相关的是()。
关于“节约”正确的说法有()。
Entrepreneursareeverybody’sdarlingsthesedays.Theymaybesmall,buttheyareinnovative.Andinnovation,weareassured,i
A、Mr.Smithhassignedthecontract.B、Mr.SmithisunavailabletillThursday.C、Themanshouldhavecalledbeforethevisit.D、
最新回复
(
0
)