首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2018-07-27
20
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是B的n个行向量的转置向量,因此,由(Ⅰ)的已知基础解系可知 AB
T
=O 转置即得BA
T
=O 因此可知A
T
的n个列向量…即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为n,故(Ⅱ)的解空间的维数为2n-n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,故2n-r(A)=n,得r(A)=n,于是A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 yc
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
(c
1
,c
2
,…,c
n
为任意常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/4WW4777K
0
考研数学三
相关试题推荐
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
设4阶矩阵A的秩为2,则r(A*)=_____.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
设n阶矩阵A=,则|2A|=_______.
设H=,其中A,B分别是m阶和n阶可逆矩阵,证明:矩阵H可逆,并求其逆H-1.
设A是n阶实对称矩阵,AB+BTA是正定矩阵,证明A可逆.
设A是三阶实对称矩阵,r(A)=1,A2一3A一0,设(1,1,一1)T为A的非零特征值对应的特征向量.求A的特征值;
设A,B均为四阶方阵,r(A)=3,r(B)=4,其伴随矩阵分别为A*,B*,则r(A*B*)=________.
已知A为三阶方阵,A2—A—2E=D,且0<|A|<5,则|A+2E|=________。
随机试题
简述网络计划技术的原理及优点。
不属于理气药主要归经的是
在下列各种说法中,最能反映资产配置决策重要性的是()。
下列市场经济组织中,应对自身债务承担有限责任的是()。
在长期投资决策中,一般属于营业期现金流出项目的是()。
教育目的即教育方针。
(2018·山西)某学生在与他人谈话时缺乏自信,于是老师用角色扮演的方式来增强他的自信心。这属于()
矩阵对策是指处于利益竞争的两个关系主体,各自可选的策略有限,且在一局对策中双方得失和为零的现象,即要不成功、要不失败。对策中,一方真正成功的措施应该是,针对对方所采取的行动相应地制定有利于自己的应对策略,各方选择的策略必定是自己对对方策略预测的最佳反应。根
根据我国宪法及其他相关法律规定,下列构成违宪违法的是:
A.overachievingB.recruitingC.highD.withE.underachievingF.shortageG.wher
最新回复
(
0
)