首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列结论是否正确?为什么? (Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0); (Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的可导性; (Ⅲ
判断下列结论是否正确?为什么? (Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0); (Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的可导性; (Ⅲ
admin
2021-11-09
82
问题
判断下列结论是否正确?为什么?
(Ⅰ)若函数f(x),g(x)均在x
0
处可导,且f(x
0
)=g(x
0
),则f’(x
0
)=g’(x
0
);
(Ⅱ)若x∈(x
0
-δ,x
0
+δ),x≠x
0
时f(x)=g(x),则f(x)与g(x)在x=x
0
处有相同的可导性;
(Ⅲ)若存在x
0
的一个邻域(x
0
-δ,x
0
+δ),使得x∈(x
0
-δ,x
0
+δ)时f(x)=g(x),则(x)与g(x)在x
0
处有相同的可导性.若可导,则f’(x
0
)=g’(x
0
).
选项
答案
(Ⅰ)不正确.函数在某点的可导性不仅与该点的函数值有关,还与该点附近的函数值有关.仅有f(x
0
)=g(x
0
)不能保证f’(x
0
)=g’(x
0
).正如曲线y=f(x)与y=g(x)可在某处相交但并不相切. (Ⅱ)不正确.例如f(x)=x
2
,g(x)=[*]显然,当x≠O时f(x)=g(x),但f(x)在x=0处可导,而g(x)在x=0处不可导(因为g(x)在x=0不连续). (Ⅲ)正确.由假设可得当x∈(x
0
-δ,x
0
+δ),x≠x
0
时 [*] 故当x→x
0
时等式左右端的极限或同时存在或同时不存在,而且若存在则相等.再由导数定义即可得出结论.
解析
转载请注明原文地址:https://kaotiyun.com/show/4cy4777K
0
考研数学二
相关试题推荐
以y=C1e-2χ+C2eχ+cosχ为通解的二阶常系数非齐次线性微分方程为_______.
微分方程χy′=+y(χ>>0)的通解为_______.
证明:当0<χ<1时,.
证明:当χ>1时,
设曲线L:r=e2θ,则曲线L的弧微分为_______.
设f(x,y)=x3+y3-3x2-3y2,求f(x,y)的极值及其在x2+y2≤16上的最大值.
已知,且f(0)=g(0)=0,试求
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.令C=(α1,α2,α3,α4,b),求Cx=b的通解.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化。
极限的充要条件是()
随机试题
A、Plantingforeigntreesalongwatercourses.B、Reconnectingriverstohighplainsordeserts.C、Replacingtraditionalagricultu
打破习惯势力和主观偏见的束缚,研究新情况,解决新问题,使思想和实际相符合,使主观和客观相符合是指()
A.鳞状细胞癌B.腺癌C.声门上区癌D.声门下区癌E.声门区癌喉癌发生最不常见区域
我国原发性高血压引起死亡的原因中最常见的是
既善清虚热,又可清泄肺热的药物是
合同结构图中矩形框的表达含义是()的参与单位。
施测WAIS-RC的知识分测验应从第()题开始。
根据认知学习理论,教学活动中学生学习的实质是内在的()
TheUnitedStatesiswidelyrecognizedtohaveaprivateeconomybecauseprivatelyownedbusinessplay【C1】______roles.TheAmer
软件的三要素是
最新回复
(
0
)