首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明: r(A-aE)+r(A-bE)=n.
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明: r(A-aE)+r(A-bE)=n.
admin
2018-06-27
56
问题
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:
r(A-aE)+r(A-bE)=n.
选项
答案
一方面,根据矩阵秩的性质⑦,由(A-aE)(A-bE)=0得到r(A-aE)+r(A-bE)≤n.另一方面,用矩阵的秩的性质③,有r(a-aE)+r(a-bE)≥r((A-aE)-(A-bE))=r((b-a)E)=n. 两个不等式结合,推出r(A-aE)+r(A-bE)=n.
解析
转载请注明原文地址:https://kaotiyun.com/show/4ek4777K
0
考研数学二
相关试题推荐
设S表示夹在x轴与曲线y=F(x)之间的面积.对任何t>0,S1(t)表示矩形-t≤x≤t,0≤y≤F(t)的面积.求:(1)S(t)=S—S1(t)的表达式;(2)S(t)的最小值.
设直线y=ax与抛物线.y=x2所围成图形的面积为S1,它们与直线x=1所围成图形的面积为S2,并且a<1.(1)试确定a的值,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T.试问:当a,b,c满足什么条件时,(1)β可由3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1,α
设A为10×10矩阵计算行列式|A-λE|,其中E为10阶单位矩阵,λ为常数.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,0为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式.
设曲线l位于xOy平面的第一象限内,l上任一点M处的切线与Y轴总相交,交点记为A.已知,且l过点,求l的方程.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征值;
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
设D={(x,y)|x2+y2≤1},证明不等式
随机试题
商标有哪些作用?
下列各项血脂指标中,何者的生理性变异最大
银行风险是指银行在经营过程中,由于各种不确定因素的影响,而使其()蒙受损失的可能性。
国有企业产权转让方案应载明下列内容()。
传统都有其“原本”,原本是传统的始发言行。传统的始发言行有其特定的原初行动者、特定的受动者,还有其特定的叫做参照系的现实环境。在传统的原本中,所有这些都是特定的、不能代替的。随着时间的推移和历史的进展,原本逐步地被认为是具有权威性的、天经地义的、带有信仰性
依照我国《公务员法》,下述情况,可录用为公务员的人员是()。
施拉姆(南昌大学2020年研;华南师大2020年研;南京师大2017年研;厦门大学2016年研;人大2013年研;湖南大学2010年研)
()吉塞利认为男性与女性的区别对事业成功与否影响不大。
需求分析的最终结果是产生【】。
TheUnitedStatesgovernmentwantstoknowwhatthepublicthinksaboutitsfindingsonthesafetyof【36】animals.TheFooda
最新回复
(
0
)