首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明: r(A-aE)+r(A-bE)=n.
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明: r(A-aE)+r(A-bE)=n.
admin
2018-06-27
115
问题
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:
r(A-aE)+r(A-bE)=n.
选项
答案
一方面,根据矩阵秩的性质⑦,由(A-aE)(A-bE)=0得到r(A-aE)+r(A-bE)≤n.另一方面,用矩阵的秩的性质③,有r(a-aE)+r(a-bE)≥r((A-aE)-(A-bE))=r((b-a)E)=n. 两个不等式结合,推出r(A-aE)+r(A-bE)=n.
解析
转载请注明原文地址:https://kaotiyun.com/show/4ek4777K
0
考研数学二
相关试题推荐
设直线y=ax与抛物线.y=x2所围成图形的面积为S1,它们与直线x=1所围成图形的面积为S2,并且a<1.(1)试确定a的值,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b—2,a+2b)T,β=(1,3,-3)T,试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3唯一地线性表示,并求出表示式;
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2不是A的特征向量.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
从抛物线y=x2一1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,求这两条切线的切线方程;
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
随机试题
下面对疾病面容的描述对应的是A肝病面容B贫血面容C大叶性肺炎,急性面容D慢性面容E以上都不是面色苍白,唇舌色淡,表情疲惫
某呼吸衰竭病人,应用辅助呼吸和呼吸兴奋剂过程中,出现恶心、面颊潮红、肌肉颤动等现象,应考虑()。
通过两种测量手段测得某管道中液体的压力和流量信号如图中的曲线1和曲线2所示,由此可以说明()。
电算化会计核算流程中的记账有()特点。
艺术品投资之所以具有较大的风险,不是因为()
按照增值税相关规定,下列项目在计算增值税时应计入销售额的是( )。
【2014年】某公司存货周转期为160天,应收账款周转期为90天,应付账款周转期为100天,则该公司现金周转期为()天。
语料库
下列关于Windows2003系统DHCP服务器的描述中,错误的是()。
Ifyousmoke—particularlycigarettes—youarefarmorelikelythananon—smokertosufferordiefromseveralmajordiseases—nota
最新回复
(
0
)