首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,﹣1)T. (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,﹣1)T. (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
admin
2022-04-10
64
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX经过正交变换化为标准形f=2y
1
2
-y
2
2
-y
3
2
,又A
*
α=α,其中α=(1,1,﹣1)
T
.
(Ⅰ)求矩阵A;
(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x
1
,x
2
,x
3
)=X
T
AX化为标准形.
选项
答案
(Ⅰ)显然A的特征值为λ
1
=2,λ
2
=﹣1,λ
3
=﹣1,|A|=2,伴随矩阵A
*
的特征值为μ
1
=1,μ
2
=﹣2,μ
3
=﹣2.由A
*
α=α得AA
*
α=Aα,即Aα=2α,即α=(1,1,﹣1)
T
是矩阵A的对应于特征值λ
1
=2的特征向量.令ξ=(x
1
,x
2
,x
3
)
T
为矩阵A的对应于特征值λ
2
=﹣1,λ
3
=﹣1的特征向量,因为A为实对称矩阵,所以α
T
ξ=0,即x
1
+x
2
-x
3
=0,于是λ
2
=﹣1,λ
3
=﹣1对应的线性无关的特征向量为[*] [*] (Ⅱ)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4hR4777K
0
考研数学三
相关试题推荐
设z=arctan.
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设f(x)二阶连续可导,且f’’(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0<0<
设商品的需求函数为Q=100-5P,其中Q,P分别表示需求量和价格,如果商品需求弹性的绝对值大于1,则商品价格的取值范围是________.
设矩阵试判断A和B是否相似,若相似,求出可逆矩阵X,使得X-1AX=B.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足证明:存在ξ∈(0,1),使得f’(ξ)=2ξf(ξ)。
求微分方程y"+y'-2y=xex+sin2x的通解.
证明:曲线上任一点处切线的横截距与纵截距之和为2.
讨论反常积分∫02的敛散性,若收敛计算其值.
随机试题
毛泽东思想活的灵魂是【】
WhenIcamethroughthecustomsattheairport,Ihadtopay______onthewatchIhadbought.
诊断虚劳的主要依据有( )
症见发热,恶热喜冷,口渴欲饮,面赤,烦躁不宁,痰、涕黄稠,小便短黄,大便干结,舌红,苔黄燥少津,脉数,证属
A.寒厥所致的四肢不温者慎用B.肝胃郁火、胃阴不足所致的胃痛者慎用C.阴虚火旺者慎用D.肝阴不足所致的胁痛者不宜使用E.血热所致的肠风便血、痔疮者不宜使用左金丸的使用注意事项是()
( )不属于免征契税的情形。
回购期限是首次交收日至到期交收日的实际天数,以天为单位,不含首次交收日和到期交收日。()
()的制定是新中国成立后制宪权的唯一一次行使,它体现了制宪权的民主性。
下列给定程序中,函数fun的功能是:将N×N矩阵主对角线元素的值与反向对角线对应位置上元素的值进行交换。例如,若N=3,有下列矩阵:123456789交换后为:32145
Nowonderit’ssodifficulttokickthehabit:smokerswhowatchmoviestars【C1】______upcigarettesonscreensimultaneouslyact
最新回复
(
0
)