首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P—1AP; ③AT; α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P—1AP; ③AT; α肯定是其特征向量的矩阵个数为( )
admin
2019-01-06
35
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
;
②P
—1
AP;
③A
T
;
α肯定是其特征向量的矩阵个数为( )
选项
A、1
B、2
C、3
D、4
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
又
知α必是矩阵E一
属于特征值1一
的特征向量。
关于②和③则不一定成立。这是因为
(P
—1
AP)(P
—1
α)=P
—1
Aα=λP
—1
α,
按定义,矩阵P
—1
AP的特征向量是P
—1
α。因为P
—1
α与α不一定共线,因此α不一定是P
—1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE一A)x=0与(λE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量。所以应选B。
转载请注明原文地址:https://kaotiyun.com/show/4pW4777K
0
考研数学三
相关试题推荐
设D为有界闭区域,z=f(x,y)在D上二阶连续可偏导,且在区域D内满足:,则().
设f(x1,x2,x3)=x12+2x22+x32+2ax1x2+2bx1x3+2cx2x3=xTAx,其中AT=A.求正交矩阵Q,使得XTAX在正交变换X=QY下化为标准二次型.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x3+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.求正交变换矩阵;
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度v1朝A追去,求B的轨迹方程.
已知随机变量X的概率密度386(I)求分布函数F(x);(Ⅱ)若令y=F(X),求Y的分布函数FY(y).
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
已知事件A发生必导致B发生,且0<P(B)<1,则
(89年)设f(χ)=2χ+3χ-2,则当χ→0时【】
设则
设f(x)=.(Ⅰ)若f(x)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
随机试题
根据《宪法》的规定,下列说法正确的是()。
在选择了某种版式的新建空白幻灯片上,可以看到一些带有提示信息的虚线框,这是为标题、文本、图表、剪贴画等内容预留的位置,称为()
拟诊为下列治疗小不妥的是
地方性氟中毒的氟源除饮水外,还有()
甲建设工程公司与乙房地产开发公司签订工程承包合同,承建乙公司开发的住宅小区建设项目。此法律关系的客体是( )。
()属于传统型外汇交易业务。
商业银行的贷款项目评估主要是分析盈利能力,其他的可以省略。()
A—EngineFuelSystemH—theelectricsystemB—LightsandWiresI—powertrainC—StartingSystemJ—one-waydriveD—underpressureK
【B1】【B13】
Asshewalkedroundthehugedepartmentstore,Elaine【C1】______howdifficultitwastochooseasuitableChristmaspresentforh
最新回复
(
0
)