首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,问当k取何值时,存在可逆矩阵P,使得P一1AP成为对角矩阵?并求出P和相应的对角矩阵.
设A=,问当k取何值时,存在可逆矩阵P,使得P一1AP成为对角矩阵?并求出P和相应的对角矩阵.
admin
2017-04-23
40
问题
设A=
,问当k取何值时,存在可逆矩阵P,使得P
一1
AP成为对角矩阵?并求出P和相应的对角矩阵.
选项
答案
由|λE 一A|=[*]=(λ+1)
2
(λ一1)=0,得A的全部特征值为λ
1
一λ
2
=一1,λ
3
=1.故A可对角化[*]A的属于2重特征值λ
1
=λ
2
=一1的线性无关特征向量有2个[*]方程组(一E一A)x=0的基础解系含2个向量[*]3一r(一E一A)=[*]k=0.当k=0时,可求出A的对应于特征值一1,一1;1的线性无关特征向量分别可取为α
1
=(一1,2,0)
T
,α
2
=(1,0,2)
T
,α
3
=(1,0,1)
T
,故令P=[α
1
,α
2
,α
3
]=[*],则有P
一1
AP=diag(一1,一1,1).
解析
转载请注明原文地址:https://kaotiyun.com/show/4tt4777K
0
考研数学二
相关试题推荐
极限是否存在?
设,其中f,g均可微,则=________。
设a>0,讨论方程aex=x2根的个数.
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
设y=y(x)是二阶常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限是________。
某型号电子元件寿命(单位:h)服从分布N(160,202),随机抽四件,求其中没有一件寿命小于180h的概率.
已知函数f(x)=ax3-6ax2+b(a>0),在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
f(x)连续,且f(0)≠0,求极限
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
(2002年试题,十二)已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
近代中国革命的主要敌人是帝国主义、封建主义和官僚资本主义,决定中国革命对象的是()
手掌性线反应()系统功能的强弱。
行政组织的官员都无报酬,任期短,行政工作未职业化是在()
Henevergavemuchthoughttotheadditionalkilogramshehad______lately.
A.电极埋入双侧膈神经上B.采用植入式电极刺激逼尿肌C.女性患者可用阴道电极D.髂肋肌、最长肌棘肌E.腰肌FES对尿潴留的治疗
请简要回答获取信息的基本过程。
下列京剧脸谱中能表现关羽特征的是()。
在合作学习理念下,教师应该为合作学习行动提供清晰指导,主要有()。
消费者善意是指消费者基于自身直接经历或者主观上的认知而产生的对某一国家的喜爱、共鸣乃至情感依恋,而这种情感会让消费者对有关该国产品的消费决策产生影响。根据上述定义,下列属于消费者善意的是:
语言在人类的交流中起重要的作用。如果一种语言是完全有效的,那么,其基本语音的每一种可能的组合都能够表达有独立意义和可以理解的词。但是,如果人类的听觉系统接收声音信号的功能有问题,那么,并非基本语音的每一种可能的组合都能够成为有独立意义和可以理解的词。如果上
最新回复
(
0
)