首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
admin
2018-12-29
55
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0。
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0。 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得f′(ξ
1
)=f′(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/4xM4777K
0
考研数学一
相关试题推荐
设f(x)在[0,+∞)上可导,f(0)=1,且f’(x)一f(x)+=0,求∫[f’’(x)-f’(x)]e-xdx.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程.
一页长方形白纸,要求印刷的面积为Dcm2,并使所留的页边距分别为:上部与下部的宽度之和为a+b=kcm,左部与右部的宽度之和为c+d=lcm(其中d、k、l均为已知常数).试确定该页纸的长(y)和宽(x),使得它的面积S为最小.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求正交矩阵Q,使得QTAQ为对角矩阵.
计算曲线积分,其中L是从点A(一a,0)经上半椭圆(y≥0)到点B(a,0)的弧段.
求下列方程的通解:
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
(1996年)计算曲面积分其中S为有向曲面z=x2+y2(0≤z≤1),其法向量与z轴正向的夹角为锐角.
[2003年]已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:xesinydy—ye-sinxdx≥2π2.
随机试题
A、Hemissedhisplane.B、Thetaxidriveroverslept.C、Heheardaterribleaccidentreportedovertheradio.D、Hewouldhavebeen
A.附子B.干姜C.两者均用D.两者均不用治疗阳虚水肿,常选用()
患者,女,50岁。因患尿毒症而入院,患者精神萎靡,食欲差,24小时尿量80ml,下腹部空虚,无腹痛。患者目前的排尿状况是
A.抑制细菌细胞壁合成B.抑制细菌蛋白质合成C.抑制细菌DNA依赖的RNA多聚酶D.抑制细菌二氢叶酸还原酶E.抑制细菌DNA合成β-内酰胺类()
原发性痛经的病因不属于继发性痛经分类的选项是
不按期申报、领取房屋租赁证的,由()责令限期补办手续,并可处以罚款。
银行工作人员制作虚假的委托收款凭证交付他人属于()。
发挥人的主观能动性的基本途径是()
A、Thebossisoftenlateforwork.B、Thebosswillprobablydisciplinethewoman.C、Thebossmaydisregardthewoman’slateness.
HowtoUseaLibraryA)You’redrivingyourcarhomefromworkorschool.Andsomethinggoeswrong.Theenginestallsoutatligh
最新回复
(
0
)