首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
admin
2018-12-29
65
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0。
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0。 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得f′(ξ
1
)=f′(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/4xM4777K
0
考研数学一
相关试题推荐
求解微分方程
求解微分方程x2y’’+3xy’+2y=0.
已知函数y=f(x)在任意点x处的增量且当△x→0时,a是△x的高阶无穷小,y(1)=0,求y(e).
设总体x的密度函数为其中θ>0,θ,μ为未知参数,X1,X2,…,Xn为取自X的样本.求μ,σ的矩估计;
设随机变量X的分布函数为F(x),随机变量k=1,2.令U=Y1+Y2,V=Y1Y2,试求U与V的联合分布律.
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵为正定矩阵的概率为.试求:随机变量的分布律.
设随机变量x的概率密度为求概率P{X≤Y).
设B是n×n矩阵,A是n阶正定阵,证明:BTAB也是正定阵的充要条件为r(B)=n.
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
求直线L1:间的夹角。
随机试题
商品流通企业进货费用处理是怎样的?
下列使用港澳居民来往内地通行证的人员是()。
男性,46岁,饮酒后出现中上腹部持续性疼痛12小时,呕吐两次。体温:37.8℃,上腹部偏左压痛。如诊断为轻型胰腺炎,哪一项治疗是不适当的
男孩,8岁。午餐与祖父在街边进食海鲜饭。晚上两人先后出现呕吐腹泻,大便初为黄色稀水便,量多,进而变为水样便、米泔样便。无里急后重。近5小时无尿。查体:T36.7℃,P125次/分,BP70/50mmHg,R26次/分,嗜睡,脉搏细速,皮肤干燥,双肺未闻及啰
控制木材含水率的主要原因是()。
A公司为支付购货款,向B公司签发银行承兑汇票一张,甲银行已经承兑。B公司取得汇票后,将其背书转让给C公司以支付购货款,在背书时,B公司在汇票背面第一个背书栏内签章,但将“被背书人名称”处留白,直接将汇票交付给C公司。C公司取得汇票后,将其背书转让给D公司,
甲乙两公司采用合同书形式订立了一份买卖合同,双方约定由甲公司向乙公司提供100台精密仪器,甲公司于8月31日前交货,并负责将货物运至乙公司,乙公司在收到货物后10日内付清货款。合同订立后双方均未签字盖章。7月28日,甲公司与丙运输公司订立货物运输合
公司申请公司债券上市交易,应当符合哪些条件?
从所给选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
Whatisthemeaningof"Skatingonthinice"?
最新回复
(
0
)