首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
admin
2018-12-29
37
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0。
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0。 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得f′(ξ
1
)=f′(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/4xM4777K
0
考研数学一
相关试题推荐
计算
求解微分方程
设f(x)是可导的函数,对于任意的实数s、t,有f(s+t)=f(s)+f(t)+2st,且f’(0)=1.求函数f(x)的表达式.
求直线绕z轴旋转一周所得曲面S的方程,并说明s为何种曲面.
坐标xOy平面上有一力场F,在点P(x,y)处力F(x,y)的大小为P点到原点O的距离,方向为P点矢径逆时针旋转要,求质点沿下列曲线由点A(a,0)移到点B(0,a)时力F所做的功W:(1)C1:圆周x2+y2=a2在第一象限内的弧.(
假设随机变量X和Y的联合概率密度为求X和Y的联合分布函数F(x,y);
假设D={(x,y)|0≤x≤2,0≤y≤1),随机变量X和Y的联合分布是区域D上的均匀分布.考虑随机变量求U和V的相关系数Y.
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
已知y1*=xex+e2x,y2*=xex+e—x,y3*=xex+e2x—e—x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=xixj.二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
随机试题
脂肪酸的β氧化需要下列哪组维生素参加
关于妊娠期母体的变化,正确的是
男性,37岁,急刹车致使方向盘挤压上腹部16小时,上腹部、腰部及右肩疼痛,持续,伴恶心、呕吐。查体体温38.4℃,上腹部肌紧张明显,有压痛,反跳不明显,无移动性浊音,肠鸣音存在,怀疑胰腺损伤。如果处理不当,最可能的远期并发症是
治疗急惊风气营两燔证的首选方剂是( )
甲房地产经纪公司(以下简称甲公司)是乙市的一家知名企业。2017年至2018年上半年,随着乙市房地产市场的发展,甲公司的门店从15家迅速发展到80家。企业规模的快速扩张带来了从业人员素质的参差不齐、操作不规范、经纪纠纷增加等问题,因此甲公司决定加入房地产经
喷水灭火系统安装时,系统的给水管中进水管不应少于()条。
关于对纳税人、扣缴义务人未缴少缴税款的追征制度,下列说法正确的是()。
为了解决进程间的同步和互斥问题,通常采用一种称为(21)机制的方法。若系统中有5个进程共享若干个资源R,每个进程都需要4个资源R,那么使系统不发生死锁的资源R的最少数目是(22)。
Threepassions,simplebutoverwhelminglystrong,havegovernedmylife;thelongingforlove,thesearchforknowledge,andunb
Childrenwhostayawayfromschooldo______fordifferentreasons.
最新回复
(
0
)