首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令 求随机变量(X1,X2)的联合概率分布.
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令 求随机变量(X1,X2)的联合概率分布.
admin
2018-11-20
62
问题
设随机变量Y
i
(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令
求随机变量(X
1
,X
2
)的联合概率分布.
选项
答案
易见随机变量(X
1
,X
2
)是离散型的.它的全部可能取值为(0,0),(0,1),(1,0),(1,1).现在要计算出取各相应值的概率.注意到事件Y
1
,Y
2
,Y
3
相互独立且服从同参数p的0一1分布,因此它们的和Y
1
+Y
2
+Y
3
[*]Y服从二项分布B(3,p).于是 P{X
1
=0,X
2
=0}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2} =P{Y=0}+P{Y=3}=q
3
+p
3
, (q[*]1一p) P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2} =P{Y=2}=3p
2
q, P{X
1
=1,X
2
=0}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{Y=1}=3pq
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=[*]=0. 由上计算可知(X
1
,X
2
)的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4yW4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数为的指数分布,对X独立地重复观察4次,用Y表示观察值大于3的次数,求E(Y2).
设(X,Y)在区域D:0<x<1,|y|≤x内服从均匀分布.设Z=2X+1,求D(Z).
设X,Y的概率分布为,且P(XY=0)=1.求(X,Y)的联合分布;
设连续型随机变量X的分布函数为F(x)=求常数A,B;
设A为N阶矩阵,且A2—2A一8E=0.证明:r(4E一A)+r(2E+A)=n.
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.一次性抽取4个球;
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有()
随机试题
关于结核性腹膜炎哪条是错误的()。
与急性胰腺炎时代谢变化不符的结果是
男,25岁,左下颌磨牙区肿痛5个月,一个月前拔智牙后拔牙窝不愈,检查:张口度3cm,左下颌磨牙区及下颌支略膨隆,牙槽窝有绿色液体流出,X线片示左下颌体部及下颌升支囊性透射影,有骨白线包绕,最应考虑的诊断为()
工程招标代理机构资格分为()个级别。
阅读下面材料,回答问题。海洋是未来的粮仓①人口剧增,资源短缺,这是当今人类面临的最严重的环境问题之一。显然,能否妥善地解决这一问题,直接关系到人类未来的生死存亡。②资源短缺的表现之一,是可耕土地资源不足,粮食生产的增长赶不上人口的增长。正是出于这样的
张老师走进教室后,发现地上有一些碎纸片。“是哪个同学撕的废纸?”老师一问,同学们的目光不约而同地集中在陈伟的身上。“老师,是陈伟撕的。”“不是我!”教室里一下子热闹起来,你一言,我一语,吵得不可开交。张老师看在眼里,什么都明白了。这时张老师完全可以
给定资料1.2017年中央一号文件是21世纪以来指导“三农”工作的第14个中央一号文件。这份题为《中共中央国务院关于深入推进农业供给侧结构性改革加快培育农业农村发展新动能的若干意见》的文件,首次提出“田园综合体”概念,指出“支持有条件的乡村建设以农
某数的50%比它的2/3少1,这个数是( )
汉武帝时派张骞出使西域,想联络(),夹击匈奴。
设有表示学生选课的三张表,学生S(学号,姓名,性别,年龄,身份证号),课程C(课号,课名),选课SC(学号,课号,成绩),则表SC的关键字(键或码)为()。
最新回复
(
0
)