首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令 求随机变量(X1,X2)的联合概率分布.
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令 求随机变量(X1,X2)的联合概率分布.
admin
2018-11-20
23
问题
设随机变量Y
i
(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令
求随机变量(X
1
,X
2
)的联合概率分布.
选项
答案
易见随机变量(X
1
,X
2
)是离散型的.它的全部可能取值为(0,0),(0,1),(1,0),(1,1).现在要计算出取各相应值的概率.注意到事件Y
1
,Y
2
,Y
3
相互独立且服从同参数p的0一1分布,因此它们的和Y
1
+Y
2
+Y
3
[*]Y服从二项分布B(3,p).于是 P{X
1
=0,X
2
=0}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2} =P{Y=0}+P{Y=3}=q
3
+p
3
, (q[*]1一p) P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2} =P{Y=2}=3p
2
q, P{X
1
=1,X
2
=0}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{Y=1}=3pq
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=[*]=0. 由上计算可知(X
1
,X
2
)的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4yW4777K
0
考研数学三
相关试题推荐
随机变量(X,Y)的联合密度函数为f(x,y)=求常数A;
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.求在发车时有n个乘客的情况下,中途有m个乘客下车的概率;
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
设连续型随机变量X的分布函数为F(x)=求X的密度函数f(x);
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
向量组α1,α2,…,αm线性无关的充分必要条件是().
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.逐个抽取,取后无放回;
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球.(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有()
随机试题
阴虚有火,发热盗汗,面赤心烦,口干唇燥,大便干结,小便黄赤,舌红苔黄,脉数者,治宜选用
女性,71岁。左下肺鳞癌,已顺利经过手术,淋巴结无转移。患者及其家属极为关心其预后。下列不是判定预后的主要因素的是
下列各项中,属于律师执业前提的是()
【2020年真题】某住宅小区工程,基坑开挖深度10m,采用预应力锚杆复合土钉墙支护结构。在雨季施工阶段,基坑坍塌事故风险增大。下列保证基坑安全的做法中,错误的是()。
债券和股票的不同点表现在()
邓小平指出,“没有民主就没有社会主义,就没有社会主义的现代化”。这个论断指出了()。
已知随机变量X与Y相互独立且都服从参数为的0.1分布,即P{X=0}=P{X=1}=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.
(06年)设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2.…).(I)证明存在.并求该极限;(Ⅱ)计算
【B1】【B5】
Friendshipisabovereason,for,thoughyoufindvirtuesinafriend,hewasyourfriendbeforeyoufoundthem.Itisagifttha
最新回复
(
0
)