首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2015-06-29
64
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)【证明】因为r(A)=n一1,又b=α
1
+α
2
+…+α
n
,所以[*],即[*],所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+一…+(n一1)α
n-1
=0,所以α
1
+2α
2
+…+(n一1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n一1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解n=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n一1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/5454777K
0
考研数学一
相关试题推荐
已知对于n阶方阵A,存在正整数k,使得Ak=O。证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位矩阵).
设α,β为n维单位列向量,P是n阶可逆矩阵,则下列矩阵中可逆的是().
设A是n阶方阵,且A3=0,则().
若A=E122E23(1),其中E12,E23(1)为4阶初等矩阵。则A-1=().
证明:A~B,其中并求可逆矩阵P,使得P-1AP=B.
设A=E+αβT,其中α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求A的特征值和特征向量;
已知r(A)=r1,且方程组Ax=α有解。r(B)=r2,且By=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r(α1,α2,…,αn,α,β1,β2,…,βn,β)=r,则().
已知非齐次线性方程组A3×4x=6①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
微分方程的通解是______.
随机试题
在有效实施管理咨询过程中,应如何进行合理、明确的定位?
饥饿24h时,血糖浓度的维持主要靠
女性,21岁,咳嗽、咽痛2周后出现肉眼血尿、颜面浮肿,血压偏高,尿蛋白(+++)、RBC满视野/HP,血肌酐150μmol/L,尿量400ml/L,该患者最妥当的治疗方案是
乙公司向甲公司发出要约,即又发出一份“要约作废”的函件。甲公司的董事长助理收到乙公司“要约作废”的函件后,忘了交给董事长。第三天甲公司董事长发函给乙公司,提出只要将交货日期推迟两个星期,其他条件都可接受。后甲、乙公司未能缔约,双方缔约没能成功的原因是(
不属于生产经营主要设备的物品,单位价值在()元以下,可以按实际使用数额列为费用。
以下适用《劳动法》规定的劳动关系的是()
依据法律规定,在管制的判决和执行方面,下列哪一说法是不正确的?()
填入问号处最恰当的是:()。
假如明天就是选举日了,以下公民中不具有选举权的是:
WhenLauraLangankifoundextratowelsinthelaundrysmellinglemonyfresh,shenever【C1】______thatmeanther13year-oldson
最新回复
(
0
)