首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3. 求A的特征值并计算limAn.
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3. 求A的特征值并计算limAn.
admin
2021-07-27
69
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为线性无关的三维列向量,且满足Aα
1
=1/2α
1
+2/3α
2
+α
3
,Aα
2
=2/3α
2
+1/2α
3
,Aα
3
=-1/6α
3
.
求A的特征值并计算limA
n
.
选项
答案
由(2)知,A与B相似,从而知A与B有相同的特征值.由于B为三角矩阵,故其特征值即对角线的元素1/2,2/3,-1/6,也即A的特征值为1/2,2/3,-1/6·因为A的特征值均为单根,故必与对角矩阵[*]相似,于是,存在可逆矩阵Q,使得A=QAQ
-1
,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/eUy4777K
0
考研数学二
相关试题推荐
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于().
设A是n×m矩阵,B是m×n矩阵(n<m),且AB=En.证明:B的列向量组线性无关.
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
设f(x)连续,且F(x)=,证明:若f(x)是偶函数,则F(x)为偶函数;
已知,y1=x,y2=x2,y3=ex为方程y’’+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
微分方程y〞-y′-6y=(χ+1)e-2χ的特解形式为().
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。[img][/img]
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
随机试题
下列有关剥夺政治权利的说法,哪些是正确的?()(2002/2/45)
有机磷杀虫剂中毒应用阿托品治疗时,错误的是()
某甲在国家机关任职,某乙有求于他的职务行为,给某甲送上5万元的好处费。某甲答应给某乙办事,但因故未能办成。某乙见事未办成,要求某甲退回好处费,某甲拒不退还,并威胁某乙如果再来要钱就告某乙行贿。对某甲的行为应如何定罪?
招标文件一般包括()等内容。
老张指数化月平均缴费额是3000元,当地上年度月平均工资为2000元,运营所得200元,问老张的个人养老保险账户每月累积额为()元
在IC保险公司推出的退休基金计划中,小王每月月初投入500元。如果年利率为7.5%,月复利计息,10年后他的账户的余额为( )。不考虑任何费用扣除。
设a,b为实数,0<a<b.证明:在开区间(a,b)中存在有理数.(提示:选取.)
如果文件系统中有两个文件重名,不应采用()。
分别简述在无税和有税条件下MM定理的主要内容。
按照标识符的要求,下列选项中,()符号不能组成标识符。
最新回复
(
0
)