首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3. 求A的特征值并计算limAn.
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3. 求A的特征值并计算limAn.
admin
2021-07-27
46
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为线性无关的三维列向量,且满足Aα
1
=1/2α
1
+2/3α
2
+α
3
,Aα
2
=2/3α
2
+1/2α
3
,Aα
3
=-1/6α
3
.
求A的特征值并计算limA
n
.
选项
答案
由(2)知,A与B相似,从而知A与B有相同的特征值.由于B为三角矩阵,故其特征值即对角线的元素1/2,2/3,-1/6,也即A的特征值为1/2,2/3,-1/6·因为A的特征值均为单根,故必与对角矩阵[*]相似,于是,存在可逆矩阵Q,使得A=QAQ
-1
,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/eUy4777K
0
考研数学二
相关试题推荐
设A是3阶矩阵,交换A的1,2列得B,再把B的第2列加到第3列上,得C.求Q,使得C=AQ.
设矩阵Am×n的秩r(A)=m<Em,Em为m阶单位矩阵,下述结论中正确的是
级数(常数α>0)()
设A,B皆为n阶矩阵,则下列结论正确的是().
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
设A为三阶矩阵,且Aαi=iαi(i=1,2,3),其中α1=(1,2,3)T,α2=(0,1,2)T,α3=(0,0,1)T,求A。
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中
在下列微分方程中以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是().
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系.
随机试题
Asprotectorofherfamily’shealth,thepoineerwomanconfrontedsituationssheneverimaginedbeforecrossingtheMississippi.
上消化道出血最常见的病因是
在骨髓涂片细胞学检查的内容中,错误的是
下列不通过“应交税费”科目核算的税类是()。
“生产成本”账户的期末余额,在编制资产负债表时,应填列在“存货”项目下。()
【2014华夏银行】M、N两数均恰含有质因数3和5,他们的最大公约数是75。已知M有12个约数,N有10个约数,那么M、N两数的和等于()。
已知双曲线的中心在原点,坐标轴为对称轴,一条渐近线方程y=,右焦点F(5,0),双曲线的实轴为A1A2,P为双曲线上一点(不同于A1,A2),直线A1P、A2P分别与直线l:x=交于M、N两点.求双曲线的方程;
(2005年单选4)我国1997年刑法关于溯及力的规定采取的是()。
关于语句 #include<iostream> usingnamespacestd; voidmain() {cout<<100.8989663<<’; cout<<fixed<<100.8989663<
A、StorethebicycleinsidethedormitoryB、AsksomeonetorepairthebicycleC、RidethebicycleoncampusD、Trytofindthebicy
最新回复
(
0
)