首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设微分方程xy’﹢2y=2(ex-1). (I)求上述微分方程的通解,并求使存在的那个解(将该解记为y0(x)),以及极限值; (Ⅱ)补充定义之后使y0(x)在x=0处连续,求y0’(x),并请证明:无论x=0还是x≠0,y0’(x)均连续.
设微分方程xy’﹢2y=2(ex-1). (I)求上述微分方程的通解,并求使存在的那个解(将该解记为y0(x)),以及极限值; (Ⅱ)补充定义之后使y0(x)在x=0处连续,求y0’(x),并请证明:无论x=0还是x≠0,y0’(x)均连续.
admin
2018-12-21
63
问题
设微分方程xy
’
﹢2y=2(e
x
-1).
(I)求上述微分方程的通解,并求使
存在的那个解(将该解记为y
0
(x)),以及极限值
;
(Ⅱ)补充定义之后使y
0
(x)在x=0处连续,求y
0
’
(x),并请证明:无论x=0还是x≠0,y
0
’
(x)均连续.
选项
答案
(I)当x≠0时,原方程化为[*] 由一阶线性微分方程的通解公式,得通解 [*] 其中C为任意常数. 由上述表达式可知,[*]y(x)存在的必要条件是 [*] (Ⅱ)[*] y
0
’
(x)在x=0处连续,又y
0
’
(x)在x≠0处也连续(初等函数),故无论x=0还是x≠0, [*] 均连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Aj4777K
0
考研数学二
相关试题推荐
(2009年)设函数f(χ,y)连续,则∫12dχ∫χ2f(χ,y)dy+∫12dy∫y4-yf(χ,y)dχ=【】
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(2002年)位于曲线y=χe-χ(0≤χ<+∞)下方,χ轴上方的无界图形的面积是________.
(2008年)曲线y=(χ-5)的拐点坐标为_______.
(2008年)设函数f(χ)=χ2(χ-1)(χ-2),则f′(χ)的零点个数【】
(2015年)设矩阵A=,且A3=O(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.
设在区[e,e2]上,数p,q满足条件px+q≥lnx求使得积分I(p,q)=(px+q—lnx)dx取得最小值的p,q的值.
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
随机试题
A、1B、0C、2D、C
补充脑内多巴胺的含量用安坦(苯海索)为
下列关于内部收益率的表述中,不正确的是()。
对县级以上的地方各级人民政府工作部门的具体行政行为不服申请的复议,由本级人民政府或者上一级主管部门管辖。但是法律规定,对()部门的行政复议,须向上一级主管部门申请。
甲公司2×14年度发生如下交易或事项:(1)以盈余公积转增资本5500万元;(2)向股东宣告并分配现金股利450万元;(3)接受控股股东的现金捐赠3500万元;(4)外币报表折算差额本年度增加700万元。不考虑所得税等其他因素。上述交易或事项对甲公
“检验”定义所说的符合性评价中“符合”的含义是()。
()是拉弦乐器。
强迫症:以强迫观念和强迫动作为主要表现的一种神经症。以有意识的自我强迫与有意识的自我反强迫同时存在为特征,患者明知强迫症状的持续存在毫无意义且不合理,却不能克制地反复出现。根据上述定义,下列属于强迫症的是()。
商标局可依法宣告注册商标无效的情形有()。
A、Tofindabettersciencejournalinthelibrary.B、Nottomissanychancetocollectusefulinformation.C、Tobuythelatesti
最新回复
(
0
)