首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf’(ξ)lnb/a.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf’(ξ)lnb/a.
admin
2021-10-18
32
问题
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf’(ξ)lnb/a.
选项
答案
令g(x)=lnx,g’(x)=1/x≠0,由柯西中值定理,存在ξ∈(a,b),使得[f(b)-f(a)]/[g(b)-g(a)]=f’(ξ)/g’(ξ),即[f(b)-f(a)]/(lnb-lna)=f’(ξ)/1/ξ,整理得f(b)-f(a)=ξf’(ξ)lnb/a.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Ay4777K
0
考研数学二
相关试题推荐
过曲线y=(x≥0)上的点A作切线,使该切线与曲线及x轴所围成的平面图形的面积为3/4,则点A的坐标为().
设函数f(x),g(x)在[a,b]上连续,且g(a)=g(b)=1,在(a,b)内f(x),g(x)可导,且g(x)+gˊ(x)≠0,fˊ(x)≠0,证明:
设则I,J,K的大小关系为.
证明:对任意的χ,y∈R且χ≠y,有.
设f(χ),g(χ)在区间[a,b]上连续,且g(χ)<f(χ)<m,则由曲线y=g(χ),y=f(χ)及直线χ=a,χ=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
设z=f(χ2+y2,χy,χ),其中f(u,v,w)二阶连续可偏导,求.
求由曲线y=4-χ2与χ轴围成的部分绕直线χ=3旋转一周所成的几何体的体积.
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
设f(x)=(Ⅰ)讨论f(x)的连续性,若有间断点,则指出间断点的类型;(Ⅱ)判断f(x)在(﹣∞,1]是否有界,并说明理由。
随机试题
评价稿件质量的常用方法有()。
我国民族语文政策的基本点是坚持()
一家三口,分别是丈夫、妻子和一个未婚的女儿,此家庭结构类型是
湿热痢的临床表现是疫毒痢的临床表现是
脉压增大的先天性心脏病是
与故障树分析不同,事件树分析是使用(),事件树可提供记录事故后果的系统性的方法,并能确定导致事故后果与初始事件的关系。
城市总体规划是()。
旅行车上要配备的安全锤,如图的四把铁锤,质量相同,形状不同。为了更容易地打破玻璃,应该选择的安全锤是:
表面看来。美国目前面临的公众吸毒问题和20世纪20年代所面临的公众酗酒问题很类似,当时许多人不顾禁止酗酒的法令而狂喝滥饮。但是。二者还是有实质性的区别的。吸毒,包括吸海洛因和可卡因这样一些毒品。从来没有在大多数中产阶级分子和其他一些守法的美国人中成为一种被
A、极昼B、极光C、龙卷风D、紫外线A
最新回复
(
0
)