首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1. 证明:存在ξ∈(0,3),使得f′(ξ)=0.
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1. 证明:存在ξ∈(0,3),使得f′(ξ)=0.
admin
2019-08-23
66
问题
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
证明:存在ξ∈(0,3),使得f′(ξ)=0.
选项
答案
因为f(χ)在[0,3]上连续,所以f(χ)在[0,2]上连续,故f(χ)在[0,2]取到最大值M和最小值m,显然3m≤f(0)+f(1)+f(2)≤3M,即m≤1≤M,由介值定理,存在c∈[0,2],使得f(c)=1. 因为f(χ)在[c,3]上连续,在(c,3)内可导,且f(c)=f(3)=1,根据罗尔定理,存在 ξ∈(c,3)[*](0,3),使得f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/4zA4777K
0
考研数学二
相关试题推荐
设函数f(x)=并记F(x)=∫0xf(t)dt(0≤x≤2),试求F(x)及∫f(x)dx.
设f(x),g(x)在(a,b)内可导,g(x)≠0且(a,b)).证明:存在常数c,使得f(x)=cg(x),x∈(a,b).
设f(χ)=讨论f(χ)在χ=0处的可导性.
已知3阶矩阵A的第一行是(a,b,c),a,b,C不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则(1+x)sinydσ=______。
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D,求a的值,使V(a)取得最大值。
计算二重积分(x2+y2)dσ,其中D是由直线x=2,y=2,x+y=1,x+y=3以及x轴与y轴所围成的平面区域。
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。求dz;
考虑二元函数f(x,y)的四条性质:①f(x,y))在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。则有(
求不定积分∫(arcsinx)2dx.
随机试题
球墨铸铁中碳以()的形式存在,因此强度和塑性都较好。
下列哪类商标不是按同一标准分类的?()
患者男,28岁,3天前因外伤左上中切牙冠折,要求美观修复。检查:牙冠切1/2缺损,牙髓暴露,探痛明显。牙龈红肿,牙石多。叩痛(十),Ⅰ度松动。余牙良好。最佳的治疗方案是
治疗寒湿痢的主方是治疗阴虚痢的主方是
盘亏固定资产经批准后应记入( )账户的借方。
中国人民银行的职责不包括()。
刑罚与前提制裁方法的主要区别在于()。
篇目为12篇的封建成文法典包括()。
【C1】______somenineteenthcenturyNewYorkerssaid"Harlem",theymeantalmostallofManhattanaboveEighty-sixthStreet.Towar
A、Becausetheylooktrueblueunderwater.B、Becausetheylooktrueblueonthesurface.C、Becausetheyhavetrueblueunderbelli
最新回复
(
0
)