首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1. 证明:存在ξ∈(0,3),使得f′(ξ)=0.
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1. 证明:存在ξ∈(0,3),使得f′(ξ)=0.
admin
2019-08-23
140
问题
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
证明:存在ξ∈(0,3),使得f′(ξ)=0.
选项
答案
因为f(χ)在[0,3]上连续,所以f(χ)在[0,2]上连续,故f(χ)在[0,2]取到最大值M和最小值m,显然3m≤f(0)+f(1)+f(2)≤3M,即m≤1≤M,由介值定理,存在c∈[0,2],使得f(c)=1. 因为f(χ)在[c,3]上连续,在(c,3)内可导,且f(c)=f(3)=1,根据罗尔定理,存在 ξ∈(c,3)[*](0,3),使得f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/4zA4777K
0
考研数学二
相关试题推荐
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
交换累次积分的积分顺序:I=∫01dxf(x,y)dy+∫14dxf(x,y)dy.
设f(χ)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(χ)≥0,f(χ)≥f′(χ)(χ>0),求证:f(χ)≡0.
设f(x),g(x)在(a,b)内可导,g(x)≠0且(a,b)).证明:存在常数c,使得f(x)=cg(x),x∈(a,b).
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:(1)在(a,b)内,g(x)≠0;(2)在(a,b)内至少存在一点ξ,使
利用代换u=ycosx将微分方程y"cosx-2y’sinx+3ycosx=ex化简,并求出原方程的通解.
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积,若Vy=10Vx,求a的值。
设曲线y=f(x),其中y=(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
∫01χarcsinχdχ=_______.
随机试题
驾驶人违反交通运输管理法规发生重大事故使公私财产遭受重大损失的可能处3年以下徒刑或拘役。
在“新幻灯片”中输入文字的方法是()。
小剂量多巴胺应用表现为
根据《世界人权宣言》下列哪一项属于经济、社会和文化权利?()
下列既可以构成该承包商的施工索赔依据,又可以构成其索赔证据的是()。
填方施工结束后,工程质量查验的内容有()。
划拨建设用地使用权时,如不办理出让手续,则转让方应当把所获得的土地收益()。
下列有关无形资产转让的会计处理中,正确的是( )。
简述评定健康的标准及其影响因素。
A、TurnonthetelevisionB、ChangethechannelimmediatelyforthewomanC、ContinuewatchingthenatureprogramD、Checktoseewh
最新回复
(
0
)