设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=a1jα1+a2jα2+…+arjαr,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.

admin2017-06-26  33

问题 设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=a1jα1+a2jα2+…+arjαr,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.

选项

答案不妨设αi(i=1,…,r)及βj(j=1,…,s)均为n维列向量,则题设的线性表示或可写成矩阵形式:[β1 β2 … βs]=[α1 α2 … αr]A,或B=PA,其中B=[β1 β2 … βs]为,n×s矩阵,P=[α1 α2 … αr]为n×r矩阵,且P的列线性无关.于是可证两个齐次线性方程组Bχ=0与Aχ=0同解:若Bχ=P(Aχ)=0,因P的列线性无关,得Aχ=0;若Aχ=0,两端左乘P,得PAχ=Bχ=0,所以Bχ=0与Aχ=0同解,[*]s-r(B)=s-r(A),[*]r(B)=r(A),[*](Ⅱ)线性无关[*]r(B)=s[*]r(A)=s.

解析
转载请注明原文地址:https://kaotiyun.com/show/5NH4777K
0

最新回复(0)