首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=a1jα1+a2jα2+…+arjαr,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=a1jα1+a2jα2+…+arjαr,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
admin
2017-06-26
61
问题
设向量组(Ⅰ):α
1
,α
2
,…,α
r
线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β
1
,β
2
,…,β
s
可由(Ⅰ)线性表示:β
j
=a
1j
α
1
+a
2j
α
2
+…+a
rj
α
r
,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关
矩阵A=(a
ij
)
r×s
的秩为s.
选项
答案
不妨设α
i
(i=1,…,r)及β
j
(j=1,…,s)均为n维列向量,则题设的线性表示或可写成矩阵形式:[β
1
β
2
… β
s
]=[α
1
α
2
… α
r
]A,或B=PA,其中B=[β
1
β
2
… β
s
]为,n×s矩阵,P=[α
1
α
2
… α
r
]为n×r矩阵,且P的列线性无关.于是可证两个齐次线性方程组Bχ=0与Aχ=0同解:若Bχ=P(Aχ)=0,因P的列线性无关,得Aχ=0;若Aχ=0,两端左乘P,得PAχ=Bχ=0,所以Bχ=0与Aχ=0同解,[*]s-r(B)=s-r(A),[*]r(B)=r(A),[*](Ⅱ)线性无关[*]r(B)=s[*]r(A)=s.
解析
转载请注明原文地址:https://kaotiyun.com/show/5NH4777K
0
考研数学三
相关试题推荐
设f(x)=xex,则f(n)(x)的极小值为__________.
将函数f(x)=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
设函数y(x)在(一∞,+∞)内有二阶导数,且y’≠0,x=x(y)是Y=y(x)的反函数.求解变换后的微分方程的通解.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,n)T,求矩阵A;
设函数f(x)在x=1的某邻域内连续,且有求f’(1),若又设f’’(1)存在,求f’’(1).
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,若α1,α2,α3线性相关,求α的值;
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积A为有限值,求b及A的值.
随机试题
既能凉血止血,又能解毒、敛疮的药物是
交磁电机扩大机有多个控制绕组,其匝数、额定电流各有不同,因此额定安匝数也不相同。()
关于体温的描述下列说法错误的是
桥梁施工测量方法有:控制测量、墩台定位及其轴线测设、桥梁结构细部放样、变形观测和竣工测量等。对于小型桥一般不进行()。
会计软件应当具有对计算机内会计数据进行查询的功能。数据查询功能满足国家统一的会计制度规定的内容和格式要求。()
国际货币基金协定第30条D款还规定实现经常项目下可兑换应对()的对外支付不加限制。
以下关于经济规律的说法错误的是()。
张某家住闹市区,人口密集交通便利,打算在自家的小平房开一个小卖部,便向工商行政管理部门申请营业许可。该营业许可属于()性质的行政许可。
已知平面区域D={(x,y)|x2+y2≤2y},计算二重积分∫(x+1)2dxdy.
A、Thelongerournapis,themoreenergywewillget.B、A20-minutenapwillhelptorestoreourenergy.C、Ashort-timenapdoes
最新回复
(
0
)