首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=a1jα1+a2jα2+…+arjαr,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=a1jα1+a2jα2+…+arjαr,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
admin
2017-06-26
43
问题
设向量组(Ⅰ):α
1
,α
2
,…,α
r
线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β
1
,β
2
,…,β
s
可由(Ⅰ)线性表示:β
j
=a
1j
α
1
+a
2j
α
2
+…+a
rj
α
r
,(j=1,2,…,s).证明:向量组(Ⅱ)线性无关
矩阵A=(a
ij
)
r×s
的秩为s.
选项
答案
不妨设α
i
(i=1,…,r)及β
j
(j=1,…,s)均为n维列向量,则题设的线性表示或可写成矩阵形式:[β
1
β
2
… β
s
]=[α
1
α
2
… α
r
]A,或B=PA,其中B=[β
1
β
2
… β
s
]为,n×s矩阵,P=[α
1
α
2
… α
r
]为n×r矩阵,且P的列线性无关.于是可证两个齐次线性方程组Bχ=0与Aχ=0同解:若Bχ=P(Aχ)=0,因P的列线性无关,得Aχ=0;若Aχ=0,两端左乘P,得PAχ=Bχ=0,所以Bχ=0与Aχ=0同解,[*]s-r(B)=s-r(A),[*]r(B)=r(A),[*](Ⅱ)线性无关[*]r(B)=s[*]r(A)=s.
解析
转载请注明原文地址:https://kaotiyun.com/show/5NH4777K
0
考研数学三
相关试题推荐
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
设y是由方程sintdt=0所确定的x的函数,则dy/dx=().
设随机变量序列X11,X12,…,X1m1,X21,X22,…,X2m2,…,X1,Xn2,…,Xamn,…相互独立且都服从参数为1的泊松分布,令则随机变量序列Y1,Y2,…,Yn,…一定
已知α1=(1,4,0,2)T,α2=(2,7,1,3)Tα3=(0,1,-1,0)T,β=(3,10,6,4)T,问:(I)a,b取何值时,β不能由α1,α2,α3线性表示?(Ⅱ)a,b取何值时,卢可由α1,α2,α3线性表示?并写出此表示式.
求满足下列条件的直线方程:
甲、乙两地相距skm,汽车从甲地匀速地行驶到乙地,已知汽车每小时的运输成本(以元为单位)由可变部分与固定部分组成:可变部分与速度(单位为km/h)的平方成正比,比例系数为b;固定部分为a元.试问为使全程运输成本最小,汽车应以多大速度行驶?
确定下列函数中C1,C2的值,使得函数满足所给定的条件:(1)y=C1cosx+C2sinx,y|x=0=1,yˊ|x=0=3;(2)y=(C1+C2x)e2x,y|x=0=0,yˊ|x=0=1.
设随机变量X1,X2,…,Xn,…相互独立,,则当n→∞时Yn以正态分布为极限分布,只要X1,…,Xn,…
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放回,求第二次抽取次品的概率.
随机试题
下列除哪项外均为结核结节的成分
电子汇划清算核算基本模式包括()
A、环磷酰胺B、柔红霉素C、甲氨蝶呤D、长春新碱E、地塞米松能引起出血性膀胱炎的化疗药物是
下列关于原发性甲状旁腺功能亢进的手术治疗方案应选择
上述临床表现最可能的诊断是该患者的治疗,下列不妥的是
关于框架结构,说法错误的是()。
下列关于流动性偏好理论的基本观点中,正确的是()。
法律草案表决通过后,该法律()。
谈运河就不能不谈到扬州,谈扬州就不能不谈到瘦西湖。当年决定让运河在这里分道入城的那个人或许只是默默无闻之辈,但他无意中却做成了中国文化史上的一段佳话。那么密集的拱桥和亭阁,那么精致的园林,那么多浓得化不开的人文历史。平山堂前唱曲的欧阳修,曲栏歌院纵酒的杜牧
新兴技术的发展,总是面临诸多困难,实际应用难以符合其过高的预期,从而使对新兴技术的期望迅速走低。假若这项新兴技术能够坚持前行,不断完善而达到成熟,最终就有望得到广泛应用。但许多新兴技术在泡沫破灭之后,或由于缺乏资金的继续投入或由于技术本身的缺陷,并不能重新
最新回复
(
0
)