设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: (1)存在c∈(a,b),使得f’(c)=0; (2)存在ξi∈(a,b)(i=1,2),且ξi≠ξ2,使得f’(ξ1)+f(ξi)=0(i=1,2);

admin2018-01-23  27

问题 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:
(1)存在c∈(a,b),使得f’(c)=0;
(2)存在ξi∈(a,b)(i=1,2),且ξi≠ξ2,使得f’(ξ1)+f(ξi)=0(i=1,2);
(3)存在ξ∈(a,b),使得f’’(ξ)=f(ξ);
(4)存在η∈(a,b),使得f’’(η)-3f’(η)+2f(η)=0.

选项

答案(1)令F(x)=∫axf(t)dt,则F(x)在[a,b]上连续,在(a,b)内可导,且F’(x)= f(x).故存在c∈(a,b),使得 ∫abf(x)dx=F(b)-F(a)=F’(c)(b-a)=f(c)(b-a)=0,即f(c)=0. (2)令h(x)=exf(x),因为h(a)=h(c)=h(b)=0,所以由罗尔定理,存在ξ1(a,c), ξ2∈(c,b),使得h’(ξ1)=h’(ξ2)=0, 而h’(x)=ex[f’(x)+f(x)]且ex≠0,所以f’(ξi)+f(ξi)=0(i=1,2). (3)令φ(x)=e-x[f’(x)+f(x)],φ(ξ1)=φ(ξ2)=0,由罗尔定理,存在ξ∈(ξ1,ξ2)[*](a, b),使得φ’(ξ)=0, 而φ’(x)=e-x[f’’(x)-f(x)]且e-x≠0,所以f’’(ξ)=f(ξ). (4)令g(x)=e-xf(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η1∈(a,c),η2∈(c,b),使得g’(η1)=g’(η2)=0, 而g’(x)=e-x[f’(x)-f(x)]且e-x≠0,所以f’(η1)-f(η1)=0,f’(η2)-f(η2)=0. 令φ(x)=e-2x[f’(x)-f(x)],φ(η1)=φ(η2)=0, 由罗尔定理,存在η∈(η1,η2)[*](a,b),使得φ’(η)=0, 而φ’(x)=e-2x[f’’(x)-3f’(x)+2f(x)]且e-2x≠0, 所以f’’(η)-3f’(η)+2f(η)=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/5NX4777K
0

最新回复(0)