首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. 证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
设α1,α2,α1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. 证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
admin
2018-04-18
91
问题
设α
1
,α
2
,α
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
选项
答案
因为α
1
,α
1
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,或k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
,因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
及l
1
,l
2
都不全为零,所以γ≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Vk4777K
0
考研数学二
相关试题推荐
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.求曲线y=f(x)的方程;
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’’(2)=__________.
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
已知a1=(1,4,0,2)T,a2=(2,7,1,3)T,a3=(0,1,-1,a)T,β=(3,10,b,4)T,问:(Ⅰ)a,b取何值时,β不能由a1,a2,a3线性表示?(Ⅱ)a,b取何值时,β可由a1,a2,a3线性表示?并写出此表示
(2011年试题,一)微分方程y’一λ2y=eλx+e-λx(λ>0)的特解形式为().
微分方程xy’+2y=xlnx满足的特解为______.
随机试题
甲有一项名称为“欧式办公桌椅”的外观设计专利,其包括欧式设计的办公桌和办公椅两件产品;乙在某网购平台上销售办公桌,其销售的办公桌与甲的外观设计专利中的欧式办公桌属于相同的设计,丙从该网购平台购买了乙销售的办公桌供自己使用。丁购买乙销售的办公桌,将其与自己生
有些炎症,西药中药都能治。不但中药能与一般抗菌素媲美,而且副作用小,成本也较低。
急性蜂窝织炎性阑尾炎的并发症有
高血压、动脉粥样硬化的老年患者,无需限制的饮食是()。
A.效果B.效率C.效应D.效益E.效用
下面对老年人用药剂量的调整描述正确的是
背景某学校食堂装修改造项目采用工程量清单计价方式进行招投标,该项目装修合同工期为4个月,合同总价为500万元,合同约定实际完成工程量超过估计工程量10%以上时调整单价,调整后综合单价为原综合单价的90%。合同约定厨房铺地砖工程量为5000m2,单价为89
根据公司法律制度的规定,甲有限责任公司章程中规定的下列事项中,符合法律规定的有()。
2014年3月,中共中央、国务院印发的《国家新型城镇化规划(2014-2020年)》指出,当今中国,城镇化与工业化、信息化和农业现代化同步发展,是现代化建设的(),彼此相辅相成。
一、根据以下资料,回答下列题。国家统计局2010年2月25日发布2009年国民经济和社会发展统计公报.称中国去年全面落实应对国际金融危机的一揽子计划和政策措施,国民经济形势总体回升向好,各项社会事业取得新的进展。初步核算,全年国内生产总值33535
最新回复
(
0
)