首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
实数域上二阶方阵所构成的线性空间V中,求它的一组基与维数.
实数域上二阶方阵所构成的线性空间V中,求它的一组基与维数.
admin
2020-09-25
94
问题
实数域上二阶方阵所构成的线性空间V中,求它的一组基与维数.
选项
答案
[*] 则V中任一元A=[*]均可由E
11
,E
12
,E
21
,E
22
线性表示,即 [*] 下证E
11
,E
12
,E
21
,E
22
线性无关: 设k
1
E
11
+k
2
E
12
+k
3
E
21
+k
4
E
22
=0,则有 [*] 从而可得k
1
=k
2
=k
3
=k
4
=0,所以E
11
,E
12
,E
21
,E
22
线性无关,于是E
11
,E
12
,E
21
,E
22
构成二阶方阵所构成的线性空间V的一组基,并且V的维数为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Wx4777K
0
考研数学三
相关试题推荐
设α=(1,-1,a)T是A=的伴随矩阵A*的特征向量,其中r(A*)=3,则a=__________
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
方程组x1+x2+x3+x4+x5=0的基础解系是_________.
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=__________。
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
(87年)求矩阵A=的实特征值及对应的特征向量.
线性方程组的通解可以表不为
[2010年]设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度.若为概率密度,则a,b应满足().
随机试题
ADSL可以与普通电话共用一条电话线,并能为用户提供固定的数据传输速率。()
龋病流行的人群分布因素中包括
根据个人所得税法律制度的规定.下列各项中纳税人应当按照规定到主管税务机关办理纳税申报的有()。
为了解全国煤炭企业的生产安全状况,找出安全隐患,专家根据经验选择10个有代表性的企业进行深入细致的调查。这类调查方法属于()。
教育事业发展的规模和速度从根本上制约于一定社会的()。
小王乘坐匀速行驶的公交车,和人行道上与公交车相对而行、匀速行走的小李相遇,30秒后公交车到站,小王立即下车与小李同一方向匀速快步行走。已知他行走的速度比小李的速度快一倍但比公交车的速度慢一半,则他多久之后追上小李?()
所谓宽容乃是说已成势力对于新兴流派的态度,正如壮年人的听任青年的活动。其重要的根据,在于活动变化是生命的本质,无论流派怎么不同,但其发展个性注重创造,同是人生的文学的方向,现象上或是反抗,在全体上实是继续,所以应该宽容,听其自由发育。关于“宽容”,这段话没
直接经验和间接经验的区别在于( )。
若f’’(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
设向量组α1,α2,α3,α4线性无关,则向量组().
最新回复
(
0
)