首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数z=(1+ey)cosx-yey,则函数z=f(x,y) ( )
设函数z=(1+ey)cosx-yey,则函数z=f(x,y) ( )
admin
2019-04-09
50
问题
设函数z=(1+e
y
)cosx-ye
y
,则函数z=f(x,y) ( )
选项
A、无极值点
B、有有限个极值点
C、有无穷多个极大值点
D、有无穷多个极小值点
答案
C
解析
本题是二元具体函数求极值问题,由于涉及的三角函数是周期函数,故极值点的个数有可能无穷,给判别带来一定的难度,事实证明,考生对这类问题把握不好,请复习备考的同学们注意加强对本题的理解和记忆.
由
得驻点为(kπ,coskπ-1),k=0,±1,±2,…,
又 zˊˊ
xx
-(1+e
y
)cosx,zˊˊ
xy
=-e
y
sinx,zˊˊ
yy
=e
y
(cosx-2-y).
①当k=0,±2,±4,…时,驻点为(kπ,0),从而
A=zˊˊ
xx
(kπ,0)=-2,B=zˊˊ
xy
(kπ,0)=0,C=zˊˊ
yy
(kπ,0)=-1,
于是B
2
-AC=-2<0,而A=-2<0,即驻点(kπ,0)均为极大值点,因而函数有无穷多个极大值;
②当k=±1,±3,…时,驻点为(kπ,-2),此时
A=zˊˊ
xx
(kπ,-2)=1+e
-2
,B=zˊˊ
xy
(kπ,-2)=0,C=zˊˊ
yy
(kπ,-2)=-e
-2
,
于是B
2
-AC=(1+e
-2
)e
-2
>0,即驻点(kπ,-2)为非极值点;
综上所述,选(C).
转载请注明原文地址:https://kaotiyun.com/show/5dP4777K
0
考研数学三
相关试题推荐
用配方法化二次型f(x1,x2,x3)=x12+x2x3为标准二次型.
设的逆矩阵A-1的特征向量.求x,y,并求A-1对应的特征值μ.
设α1,α1,…,αm,β1,β2,…,αm,γ线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设A,B为n阶矩阵,则下列结论正确的是().
设f(x)二阶连续可导,f’(0)=0,且=-1,则().
设f(x)是以T为周期的连续函数,且F(x)=∫0xf(t)dt+bx如也是以T为周期的连续函数,则b=______.
某车间生产的圆盘其直径服从区间(a,b)上的均匀分布,则圆盘面积的数学期望为________。
设A,B,C为随机事件,且A发生必导致B与C最多有一个发生,则有()
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
随机试题
下列属于主物和从物关系的是()
患者,女,45岁,近2年来反复出现多发口腔溃疡,两个月前劳累后出现左膝关节肿痛,双下肢皮肤结节红斑伴疼痛,一周前突发右眼视物不清,化验ESR增快,ANA阴性,最可能的诊断是
应用最多的立柱式X线管支架是
深立井井筒施工时,为了增大通风系统的风压,提高通风效果,合理的通风方式是()。
下列不属于企业投资性房地产的是()。
具有发行的银行、政府的银行、银行的银行三大职能的银行是()。
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
不同AS之间使用的路由协议是()。
SaveEnergyatHomeOntheaverage,Americanswasteasmuchenergyastwo-thirdsoftheworld’spopulationconsumes.That’s(1)
Whatwillthemanmostprobablydo?
最新回复
(
0
)