首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)为区间[0,1]上的非负连续函数. 证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设y=f(x)为区间[0,1]上的非负连续函数. 证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
admin
2018-04-15
112
问题
设y=f(x)为区间[0,1]上的非负连续函数.
证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
选项
答案
[*]即证明S
1
(f)=S
2
(c),或[*]根据罗尔定理,存在c∈(0,1),使得φ′(c)=0,即[*]所以S
1
(c)=S
2
(c),命题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/JcX4777K
0
考研数学三
相关试题推荐
,r(A)=2,则A*x=0的通解为________.
设x与y均大于0且x≠y,证明:.
设A是3阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥6,若A~μE是正定阵,则参数μ应满足()
求由方程2x2+2y2+z2+8xz一z+8=0所确定的函数z(x,y)的极值,并指出是极大值还是极小值.
已知非齐次线性方程组有3个线性无关的解,证明方程组系数矩阵A的秩r(A)=2;
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且f’(x)>.证
已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
设求a,b,c的值,使f’’(0)存在.
设3阶实对称矩阵A的特征值为1,2,3,η1=(一1,一1,1)T和η2=(1,一2,一1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
[*]原式
随机试题
女婴,孕35周分娩出生,体重1200g,生后吸吮能力差,皮肤胎毛多,乳腺结节<3mm,大阴唇不能遮盖小阴唇。关于该新生儿的护理,错误的是
简述病毒性心肌炎的临床表现。
女,28岁。发现血压升高3年,下肢无力1年。无高血压家族史,查体:BP160/100mmHg,无向心性肥胖,无满月脸和水牛背,未见紫纹,双下肢无水肿。实验室检查:尿比重1.005,尿pH7.0,余正常。血钠149mmol/L,血钾3.1mmol/L,肝肾功
如果该批货物采用的纸箱尺寸为60cm×40cm×20cm,每箱毛重为8.8kg,每箱净重为8.2kg,用40英尺刚质集装箱。请你以跟单员的身份,计算该批货物需要几个40英钢质集装箱?
根据《上市公司证券发行管理办法》规定,上市公司非公开发行股票,应当符合的条件有()。
世界多极化的发展趋势日益明显,主要是因为()。
凯恩斯乘数理论中对消费所做的假设,与持久收入理论是否一致?若按持久收入理论,乘数会出现怎样的变化?
关于奔腾和安腾的主要区别,下列描述正确的是()。
Whoisthespeaker?
AnoverpassonInterstate38inLakeviewCounty______yesterday,duetohighfloodwaters.
最新回复
(
0
)