首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表达式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量均线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表达式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量均线性无关.
admin
2018-09-25
51
问题
已知α
1
,α
2
,…,α
s
线性无关,β可由α
1
,α
2
,…,α
s
线性表出,且表达式的系数全不为零.证明:α
1
,α
2
,…,α
s
,β中任意s个向量均线性无关.
选项
答案
用反证法.设α
1
,α
2
,α
3
,β中存在s个向量α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
,β线性相关,则存在不全为零的数k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
,k,使得 k
1
α
1
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s
α
s
+kβ=0. ① 另一方面,由题设有 β=l
1
α
1
+l
2
α
2
+…+l
i
α
i
+…+l
s
α
s
, 其中l
i
≠0,i=1,2,…,s.代入上式,得 (k
1
+kl
1
)α
1
+(k
2
+kl
2
)α
2
+…+(k
i-1
+kl
i-1
)α
i-1
+kl
i
α
i
+(k
i+1
+kl
i+1
)α
i+1
+…+(k
s
+kl
s
)α
s
=0. 因α
1
,α
2
,…,α
s
线性无关,从而有kl
i
=0,l
i
≠0,得k=0,从而由①式得k
1
,k
2
,…,k
i-1
,k
i+1
,k
s
均为零,矛盾. 故α
1
,α
2
,…,α
s
,β中任意s个向量均线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/5eg4777K
0
考研数学一
相关试题推荐
设A,B均为n阶矩阵,且AB=A+B,证明A—E可逆.
将函数f(x)=sin(x+a)展开成x的幂级数,并求收敛域.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
已知α1,α2,α3线性无关,证明2α1+3α2,α2一α3,α1+α2+α3线性无关.
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=a+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
证明D==(x1+x2+x3)(xi-xj).
随机试题
胸部开放性损伤缝合伤口后不会出现的情况
为了规范国有土地使用权出让行为,优化土地资源配置,建立公开、公平、公正的土地使用制度,国土资源部从2002年7月1日开始实施(),明确规定了土地的有偿出让对象。
下列情况属于基础沉降不均引起的裂缝的情况有()。
股票投资的收益等于()。
下列资产负债表项目中,应根据总账科目余额直接填列的是()。
下列关于我国国家结构形式的表述,正确的有()。
设f(χ)=求f′(χ)并讨论其连续性.
考生文件夹下有工程文件sjt5.vbp。程序运行时,外观如图1-15所示,单击“显示数据”按钮,则将考生文件夹下in5.dat文件的内容读入到5行40列的二维数组a中,并按5行显示在Text1文本框内;单击“统计”按钮,则计算每行中小于50的数之和
AnacademicianwrotethatArabic—theholylanguageofreligion,artandtheMuslimsciences—is"moreof______thananaidtothe
Werequestthehonorofyourpresence,whichwillsurelydocredittotheConference.
最新回复
(
0
)