首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
admin
2018-08-02
101
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(x
1
,x
2
,…,x
n
)=
x
i
x
j
.
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
-1
;
(2)二次型g(x)=x
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(1) f(X)=(x
1
,x
2
,…,x
n
) [*] 因秩(A)=n,故A可逆,且A
-1
=[*]A
*
,从而(A
-1
)
T
=(A
T
)
-1
=A
-1
,故A
-1
也是实对称矩阵,因此二次型f(X)的矩阵为 [*] (2)因为(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,所以A与A
-1
合同,于是g(X)与f(x)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/Z2j4777K
0
考研数学二
相关试题推荐
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设A为m×n矩阵,且r(A)=m<n,则下列结论正确的是().
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
设矩阵A=且A3=0(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=_______
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
随机试题
人工流产术后12日,仍有较多阴道流血,应首先考虑的是
螺旋甾烷醇和异螺旋甾烷醇类皂苷元的结构特征有
β受体阻断剂抗心绞痛机制不包括
在“五位一体”监管体系保证金安全监管工作中,负责保证金的日常监管和现场检查的是()。
下列会计要素中反映企业财务状况的静态要素的是()
本题涉及增值税法、消费税法、城建税和教育费附加、企业所得税法。某市化妆品生产企业为增值税一般纳税人,2015年度有关生产、经营情况如下:(1)销售成套化妆品30万件,开具增值税专用发票,注明销售额7200万元;零售成套化妆品5万件,开具普通发票,取得销
衡量电能质量的技术标准是()。
2000—2009年,我国城镇居民转移性收入增长幅度与工薪收入增长幅度相比,()。
在人类的历史上,文明冲突的现象一直存在,或者说,政治和经济的利益常常披着文明精神的外衣发生冲突。但另一方面,_________。甚至可以说,冲突具有短暂性,而融合具有留存性和长远性。在许多情况下,冲突本身也成为融合的工具。填入划横线部分最恰当的一项是:
Since2007,theAmericanPsychologicalAssociation(APA)hasconductedasurveyofdifferentaspectsofstressinAmerica.Thisye
最新回复
(
0
)