首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
admin
2018-08-02
62
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(x
1
,x
2
,…,x
n
)=
x
i
x
j
.
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
-1
;
(2)二次型g(x)=x
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(1) f(X)=(x
1
,x
2
,…,x
n
) [*] 因秩(A)=n,故A可逆,且A
-1
=[*]A
*
,从而(A
-1
)
T
=(A
T
)
-1
=A
-1
,故A
-1
也是实对称矩阵,因此二次型f(X)的矩阵为 [*] (2)因为(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,所以A与A
-1
合同,于是g(X)与f(x)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/Z2j4777K
0
考研数学二
相关试题推荐
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为其中P=(e1,e2,e3).若Q=(e1,一e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x2x2-5x3x2+2x1x2-2x1x3+2x2x3.
设f(x)在[a,b]上连续,证明:∫abf(x)dx=∫ab(a+b-x)dx.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
设A是m×n矩阵,且m>n,下列命题正确的是().
随机试题
以下法律属于实体法的是
A.针尖B.针身C.针根D.针柄针尖与针柄之间为
鉴别侵蚀性葡萄胎和绒毛膜癌,正确的是
可治疗焦虑症的药物是
治疗暑温痰蒙清窍型由痰浊内蒙引起的深度昏迷,痴呆状者,宜选用治疗暑温痰蒙清窍型属痰火,实火引起的狂躁者,宜选用
有关资本溢价说法正确的是()。
甲乙两县因土地权属纠纷向市政府申请土地确权。市政府裁决争议土地为甲县所有。乙县不服,向省政府申请复议,省政府确认争议土地为乙县所有。甲县不服省政府复议决定,提起行政诉讼,关于该案的管辖,下列说法正确的是()。
在ARM汇编语言程序设计中常有子程序设计,下面指令中不属于子程序调用或者返回的指令是()。
设计窗体时,双击窗体上没有控件的地方,打开的窗口是
InWashingtonthisweek,TreasurySecretaryGeithnerannouncednewstepstorebuildtrustinfinancialmarketsandrestartthef
最新回复
(
0
)