首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 利用(I)的结果判断矩阵B—CTA-1是否为正定矩阵,并证明结论。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 利用(I)的结果判断矩阵B—CTA-1是否为正定矩阵,并证明结论。
admin
2019-01-23
62
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。
利用(I)的结果判断矩阵B—C
T
A
-1
是否为正定矩阵,并证明结论。
选项
答案
由(I)中结果知矩阵D与矩阵M=[*]合同,又因D是正定矩阵,所以 矩阵M为正定矩阵,从而可知M是对称矩阵,那么B一C
T
A
-1
C是对称矩阵。 对m维零向量x=(0,0,…,0)
T
和任意n维非零向量y=(y
1
,y
2
,…y
n
)
T
,都有 (x
T
,y
T
)M[*]>0, 可得 yT(B一C
T
A
-1
C)y>0, 依定义,y
T
(B一C
T
A
-1
C)y为正定二次型,所以矩阵B一C
T
A
-1
C为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/5mP4777K
0
考研数学三
相关试题推荐
知A、B均是三阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第一列和第2列对换得到B1,又A1B1=,则AB=__________.
设g(x)是微分方程g’(x)+g(x)sinx=cosx满足条件g(0)=0的解,求.
已知矩阵A=有三个线性无关的特征向量,λ=5是矩阵A的二重特征值,A*是矩阵A的伴随矩阵,求可逆矩阵P,使P—1A*P为对角矩阵.
设分段函数f(x,y)=f(x,y)dxdy,其中积分区域D={(x,y)|x2+y2≥2x}.
计算二重积分I=,其中D为x2+y2=1与y=|x|所围成的区域.
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使f"(ξ)=0.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22—2x32+2x1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为一12.(1)求a,b的值.(2)利用正交变换将二次型f化为标准形,并写出所用
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
设总体X的分布律为P(X=i)=(i=1,2,…,θ),X1,X2,…,Xn为来自总体的商单随机样本,则θ的矩估计量为__________(其中θ为正整数).
随机试题
宫腔镜检查时间应为
某医学院校的心理课老师询问学生关于医学心理学的概念。医学心理学的表述不恰当的是
属于糖皮质激素禁忌证的是()。
房地产经纪人必须具备的三项基本素质是()。
施工安全隐患防范的一般方法有()。
背景某建筑公司于9月份新开工某大型高档商住小区项目,共计建筑面积22万m2,地上层数38层,其中地下三层到地上六层为商业建筑,其余为民用住宅。由于本工程位于中心城区,属于该市重点工程,施工单位对安全工作非常重视。施工总承包单位成立了项目部组织施工。施工过
说明现象在较长时期内发展的总速度的指标是()。
期货交易采用( )方式。
【2011江西真题】《学记》中提出“道而弗牵,强而弗抑,开而弗达”。这体现了()的教学原则。
Topmarathonrunnerstendtobeleanandlight,starswimmersarelongthighswithhugefeetandgoldmedalweightliftersareso
最新回复
(
0
)