首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2-α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2-α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为________.
admin
2019-03-12
81
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若
β=α
1
+2α
2
-α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,
则Ax=β的通解为________.
选项
答案
[*],k
1
,k
2
∈R
解析
由β=α
1
+2α
2
-α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
可知
均为Ax=β的解,故β
1
-β
2
=
均为Ax=0的解.
由于α
1
,α
2
线性无关,可知r(A)≥2.又由于Ax=0有两个线性无关的解β
1
-β
2
,β
3
-β
4
,可知Ax=0的基础解系中至少含有两个向量,也即4-r(A)≥2,即r(A)≤2.
综上,r(A)=2,Ax=0的基础解系中含有两个线性无关的向量,故β
1
-β
2
,β
2
-β
3
即为Ax=0的基础解系.故Ax=β的通解为
,k
1
,k
2
∈R.
转载请注明原文地址:https://kaotiyun.com/show/5rP4777K
0
考研数学三
相关试题推荐
设离散型随机变量X服从参数为P(0<P<1)的0-1分布.(I)求X的分布函数F(x);(Ⅱ)令Y=F(X),求Y的分布律及分布函数F(y).
设X和Y是相互独立的随机变量,其概率密度分别为其中λ>0,μ>0是常数,引入随机变量Z=(Ⅰ)求条件概率密度fX|Y(χ|y);(Ⅱ)求Z的分布律和分布函数.
设函数f(t)有二阶连续的导数,r=,g(φ,y)=f(),则=_______.
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=O,其中B=(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换:(Ⅱ)判断矩阵A与B是否合同,并说明理由。
下列无穷小中阶数最高的是().
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(Ⅰ)验证f"(u)+=0;(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式。
设当x→0时,(x-sinx)ln(1+x)是比exn-1高阶的无穷小,而exn-1是比∫0x(1一cos2t)dt高阶的无穷小,则n为().
设y=y(x)可导,y(0)=2,令△y=y(x-△x)-y(x),且△y=△x+α,其中α是当△x→0时的无穷小量,则y(x)=______.
设三阶矩阵A,B满足关系A-1BA=6A+BA,且则B=____________.
随机试题
从资源管理的角度看,操作系统的主要功能包括处理器管理、存储管理、设备管理、联网与通信管理以及()。
猩红热样皮疹多见于频咳,喘憋重多见于
对于急性胰腺炎患者,以下哪项是护士
控制阀校准和试验要求包括()。
为了分清会计事项处理的先后顺序,便于记账凭证与会计账簿之间的核对,确保记账凭证的完好无缺,填制记账凭证时,应当( )。
宁夏旅游资源中的“两山一河”指的是()。
实施培训是指在企业培训组织管理部门或岗位人员的组织下,由培训教师实施培训,其主要内容不包括()。
下列作品中属于编年体历史著作的是()。
一个人的拥有,不是取决于机遇,而是取决于人的眼光。眼光______的人,只看到一时,而看不到一世;眼光______的人,只看到好的一面,而看不到坏的一面;只有那些眼光长远、______的人,才能拥有很多很多。填入横线部分最恰当的一项是()。
WhatistheMangoingtobuy?
最新回复
(
0
)