首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
admin
2019-03-11
74
问题
设α
1
,α
2
,…,α
s
都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
答案
A
解析
本题考的是线性相关性的判断问题,可以用定义说明(A)的正确性,做法如下:
因为α
1
,α
2
,…,α
s
线性相关,所以存在不全为0的数c
1
,c
2
,…,c
s
使得c
1
α
1
+c
1
α
2
+…+c
s
α
s
=0,用A左乘等式两边,得c
1
Aα
1
+c
1
Aα
2
+…+c
s
Aα
s
=0,于是Aα
1
,Aα
2
,…,Aα
s
线性相关.但是用秩来解此题,则更加简单透彻.只要应用两个基本性质,它们是:
1.α
1
,α
2
,…,α
s
线性无关
r(α
1
,α
2
,…,α
s
)=s.
2.r(AB)≤r(B).
矩阵(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),因此
r(Aα
1
,Aα
2
,…,Aα
s
)≤r(α
1
,α
2
,…,α
s
).
于是,若α
1
,α
2
,…,α
s
线性相关,有r(α
1
,α
2
,…,α
s
)<s,从而r(Aα
1
,Aα
2
,…,Aα
s
)<s,Aα
1
,Aα
2
,…,Aα
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/5tP4777K
0
考研数学三
相关试题推荐
设f’(x)=,其中a<b<c,证明:f’(a)≠0且f’(b)≠0,f’(c)≠0.
设Am×n,r(A)=m,Bm×(n-m),r(B)=n一m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
设X的概率密度为f(x)=X1,X2,…,Xn是取自总体X的简单随机样本.
已知a,b,c不全为零,证明方程组只有零解.
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T.a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
下列结论中正确的是
设=e—1,则当x→0时f(x)是x的
已知总体X的数学期望EX=μ,方差DX=σ2,X1,X2,…,X2n是来自总体X容量为2n的简单随机样本,样本均值为,求EY.
已知随机变量X与Y的相关系数ρ=,则根据切比雪夫不等式有估计式P{|X一Y|≥}≤________.
随机试题
设D由0≤x≤1,一1≤y≤1确定,则二重积分=__________.
患者,男性,31岁,B超可见肾上盏结石0.6cm。经解痉、中西药治疗和大量饮水后出现尿频、尿急、尿痛。现结石的位置应在
我国实行家庭联产承包经营为基础、统分结合的双层经营体制,其中统一经营层次的主体是()。
甲房地产开发公司向乙企业销售一处房地产,则对于此笔交易,甲应该缴纳的税种有()。
根据购买力平价理论,通货膨胀高的国家货币汇率()。
人的身心发展是指()。
2006年全国共有生产力促进中心1331家,比上年增加61家。生产力促进中心在全国分布广泛,但地区分布不均,四川、山西、黑龙江、广西、福建等地较多,分别为136、99、96、94、83家。边远省份数量较少,如海南省仅有1家,云南、西藏、青海各2家。
论述日耳曼人迁徙的原因、基本过程及影响。(中央民族大学2014年历史学科基础真题)
Java中对象加锁具有【】性。
A、他们之间的关系很不好B、他们之间没有话说C、他们之间的关系非常密切D、他们之间互相不认识C
最新回复
(
0
)