首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
admin
2019-03-11
30
问题
设α
1
,α
2
,…,α
s
都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
答案
A
解析
本题考的是线性相关性的判断问题,可以用定义说明(A)的正确性,做法如下:
因为α
1
,α
2
,…,α
s
线性相关,所以存在不全为0的数c
1
,c
2
,…,c
s
使得c
1
α
1
+c
1
α
2
+…+c
s
α
s
=0,用A左乘等式两边,得c
1
Aα
1
+c
1
Aα
2
+…+c
s
Aα
s
=0,于是Aα
1
,Aα
2
,…,Aα
s
线性相关.但是用秩来解此题,则更加简单透彻.只要应用两个基本性质,它们是:
1.α
1
,α
2
,…,α
s
线性无关
r(α
1
,α
2
,…,α
s
)=s.
2.r(AB)≤r(B).
矩阵(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),因此
r(Aα
1
,Aα
2
,…,Aα
s
)≤r(α
1
,α
2
,…,α
s
).
于是,若α
1
,α
2
,…,α
s
线性相关,有r(α
1
,α
2
,…,α
s
)<s,从而r(Aα
1
,Aα
2
,…,Aα
s
)<s,Aα
1
,Aα
2
,…,Aα
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/5tP4777K
0
考研数学三
相关试题推荐
设A=已知方程组Ax=b有无穷多解,求a的值并求其通解.
设总体X一N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本.(I)求使得∫a+∞f(x;μ,σ2)dx=0.05的点a的最大似然估计,其中f(x;μ,σ2)是X的概率密度;(Ⅱ)求P{X≥2}的最大似然估计.
已知n(n≥4)维向量组(I)α1,α2线性无关,(Ⅱ)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
已知一本书中每页印刷错误的个数X服从参数为0.2的泊松分布,写出X的概率分布,并求一页上印刷错误不多于1个的概率。
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值。试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}。
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a2k,…,annk;f(A)的对角线元素为f(
设f(x)=试将f(x)展开成x的幂级数.
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
(2014年)求极限
(2014年)设,且a≠0,则当n充分大时有()
随机试题
某市安全生产监督管理部门对该市某企业劳动防护用品的日常管理工作开展了专项安全监督检查,发现该企业劳动防护用品的管理有以下做法,其中不正确的是()。
在ROM6547H单元起存放指令SJMPD9H,则执行完此指令(两字节)后,程序转向地址______H。
集体无意识说
在旋转阳极X线管的使用注意事项中,可以不考虑的是
廷杖
护坡的垫层或反滤层应严格按照设计的参数、厚度和颗粒级配的要求施工,砂、砾石应筛选清洗,含泥量不得大于(),采用土工织物做反滤层时,施工应符合现行《铁路路基土工合成材料应用技术规范》的规定。
警告是既具有教育性质又具有强制性质的最轻的一种治安管理处罚,是适用最灵活、最广泛的治安管理处罚方法。( )
“孟母三迁”的故事,说明()对一个人成长的重要性。
AccordingtoMike,yogaposturesare______.
Inmyopinionstandardsofworkmanshiphave______overthepast20years.
最新回复
(
0
)