首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,YN)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,YN)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
admin
2019-11-25
48
问题
设总体X,Y相互独立且都服从N(μ,σ
2
)分布,(X
1
,X
2
,…,X
m
)与(Y
1
,Y
2
,…,Y
N
)分别为来自总体X,Y的简单随机样本.证明:S
2
=
为参数σ
2
的无偏估计量.
选项
答案
令S
2
1
=[*](X
i
-[*])
2
,S
2
2
=[*](Y
1
-[*])
2
,因为E(S
2
1
)=E(S
2
1
)=E(S
2
2
)=σ
2
, 所以E[[*](X
i
-[*])
2
]=(m-1)σ
2
,E[[*](Y
i
-[*])
2
]=(n-1)σ
2
, 于是E(S
2
)=[*]{E[[*](X
i
-[*])
2
]+E[[*](Y
i
-[*])
2
]=σ
2
, 即S
2
=[*][[*](X
i
-[*])
2
+[*](Y
1
-[*])
2
]为参数σ
2
的无偏估计量.
解析
转载请注明原文地址:https://kaotiyun.com/show/61D4777K
0
考研数学三
相关试题推荐
设总体X~N(μ,σ2),X1,X2,X3是来自总体X的样本,证明估计量的期望都是μ,并指出它们中哪一个方差最小.
(1)证明(2)设α是满足0<α<的常数,证明
设z=z(x,y)是由9x2-54xy+90y2-6yz-z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,=max(X1,…,Xn).(I)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使=bX(n)的数学期望均为θ,并求
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)2,EX=2(1—θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量(I)求的数学期望;(Ⅱ)求方差
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.试求总体X的数学期望E(X)的矩估计量和最大似然估计量.
已知总体X与Y相互独立且都服从标准正态分布,X1,…,X8和Y1,…,Y9是分别来自总体X与Y的两个简单随机样本,其均值分别为求证:服从参数为15的t分布.
已知总体X的数学期望EX=μ,方差DX=σ2,X1,X2,…,X2n是来自总体X容量为2n的简单随机样本,样本均值为.求EY.
随机试题
心脏无自律性的细胞是
A.变质性炎症B.浆液性炎症C.增生性炎症D.化脓性炎症E.激化性炎症病毒性肝炎属于
对拥有复杂产品的企业来说,一般决定产品结构的基本因素是()。
按照工程监理规范的要求,监理工程师对建设工程实施监理时,可采取的形式有()等。
下列各项中,不通过“其他应付款”科目核算的是()。
在评价审计结果时,如果被审计单位尚未调整的错报或漏报的汇总数超过重要性水平,注册会计师应当采取的措施包括( )。下列选项中,( )是注册会计师对重要性水平做出初步判断时应考虑的因素。
当事人订立合同,应具有()。
一般资料:求助者,女性,34岁,初中毕业,农民。案例介绍:两个月前求助者9岁的独生子因车祸去世,车祸发生前,她曾想去学校接儿子,但因故没去成,因此非常自责,求助者不能接受失去儿子的现实,脑子里经常浮现儿子的影子,夜间经常因梦到儿子而哭醒,求助者现在情绪低
在计算机上设计汽车的外形属于哪一类计算机应用领域?
AnimportantdevelopmentsinceWorldWarIIhasbeenthegrowthofpostdoctoraleducation,especiallyinthesciences.Postdocto
最新回复
(
0
)