首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
admin
2017-01-14
58
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
-1
AP=A。
选项
答案
(Ⅰ)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
-1
AP
1
=B,因此矩阵A与B相似,则 |λE-B|=[*]=(λ-1)
2
(λ-4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。 (Ⅱ)由(E-B)x=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;由(4E-B)x=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
)= [*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*] =(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
)时,有 P
-1
AP=Λ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6Ru4777K
0
考研数学一
相关试题推荐
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
已知函数y=y(x)由方程ey+6xy+x2-1=0确定,则y"(0)=_________.
曲线y=(x+4sinx)/(5x-2cosx)的水平渐近线方程为_____.
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
设A是m×n矩阵,B是,n×m矩阵,则
基金公司为其客户提供几种不同的基金:一个货币市场基金,三种债券基金(短期债券、中期债券和长期债券),两种股票基金(适度风险股票和高风险股票)以及一个平衡基金.在所有只持有一种基金的客户中,持有各基金的客户比例分别为货币市场20%高
随机试题
使用补气药时应适当辅以
A.切口位于睑结膜面,与睑缘平行B.切口位于睑结膜面,与睑缘垂直C.切口位于睑皮肤面,与睑缘平行D.切口位于睑皮肤面,与睑缘垂直E.切口在睑缘处睑板腺囊肿摘除时
在治疗高血压病时,下列哪种组合是错误的
营养调查的目的是()。
有关标准姿势的叙述,错误的是
假定从某一股市采样的股票为A、B、C、DIN种,在某一交易日的收盘价分别为5元、16元、24元和35元,基期价格分别为4元、10元、16元和28元,基期交易量分别为100、80、150和50,用加权股价平均法(以基期交易量为权数,基期市场股价指数为100
步步飞公司是一家大型体育用品集团,品牌连锁店分布于欧美和亚洲,占公司收入的78%和22%。金融危机后,受全球经济不利影响,欧美区业务收入连续数年下滑,而营运成本居高不下,部门地区业务出现了亏损。公司希望在未来几年将业务重心转移至中国大陆地区。同时,近年来亚
在人的发展与社会发展的关系中,教育发挥的作用是()。
关于“螳螂捕蝉,黄雀在后”,下列说法错误的是()。
SNMP是一种异步请求/响应协议,采用_____________协议进行封装。
最新回复
(
0
)