首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
admin
2017-01-14
29
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
-1
AP=A。
选项
答案
(Ⅰ)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
-1
AP
1
=B,因此矩阵A与B相似,则 |λE-B|=[*]=(λ-1)
2
(λ-4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。 (Ⅱ)由(E-B)x=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;由(4E-B)x=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
)= [*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*] =(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
)时,有 P
-1
AP=Λ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6Ru4777K
0
考研数学一
相关试题推荐
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
微分方程y"-2y’+2y=ex的通解为________.
设A是m×n矩阵,B是,n×m矩阵,则
基金公司为其客户提供几种不同的基金:一个货币市场基金,三种债券基金(短期债券、中期债券和长期债券),两种股票基金(适度风险股票和高风险股票)以及一个平衡基金.在所有只持有一种基金的客户中,持有各基金的客户比例分别为货币市场20%高
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设三阶矩阵A的特征值为λ1=﹣1,λ2=0,λ3=1,则下列结论不正确的是().
随机试题
下列哪项关于肩难产的定义是正确的
阿托品用于全麻前给药的目的是
A.单位时间内从体内药物的消除速率常数B.药物在体内的分布达平衡后,按测得的血浆药物浓度计算该药应占有的血浆容积C.血浆药物浓度下降一半所需要的时间D.单位时间内从体内清除的药物表观分布容积数E.药物吸收进入体循环的速度和程度表观分布容积(Vd
A.狂犬病B.犬瘟热C.犬传染性肝炎D.犬细小病毒病E.犬布鲁氏菌病临床以双相热、肺炎和神经症状为特征的是
A、固有层散在淋巴细胞浸润B、血管周围淋巴细胞浸润C、固有层淋巴细胞浸润D、结缔组织中淋巴细胞浸润并形成滤泡E、血管周围上皮样细胞及淋巴细胞结节样聚集慢性盘状红斑狼疮的病理特点为()
A、百合固金丸B、止咳平喘糖浆C、咳喘宁糖浆D、固本咳喘片E、蛤蚧定喘胶囊可用于支气管咳喘、老年痰喘的非处方中成药是
下列关于限售股个税计算陈述中,正确的有()。
(1)求级数的和函数S(x);(2)将S(x)展开为x-π/3的幂级数。
SavingfortheFuture-Purposeofsaving1.Womensavea.fortheirchildren’s【T1】______【T1】______b.fora【T2】____
A、AT-shirt.B、Asweatshirt.C、Asweater.D、Apairofman’spants.C
最新回复
(
0
)