首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x)=(2 一t)e一tdt的最大值和最小值.
求函数f(x)=(2 一t)e一tdt的最大值和最小值.
admin
2019-06-09
44
问题
求函数f(x)=
(2 一t)e
一t
dt的最大值和最小值.
选项
答案
因为f(x)是偶函数,故只需求f(x)在[0,+∞)内的最大值与最小值. 令 f(x)=2c(2一x
2
)e
x2
=0 故在区间(0,+∞)内有唯一驻点x=[*] 当0<x<[*]时,f’(x)>0;当x>[*]时,f’(x)<0 所以x=[*]是极大值点,即最大值点. 最大值[*]=∫
0
2
(2一t)e
一t
dt=1+e
一2
f(+∞)=∫
0
+∞
(2一t)e
一t
dt=一(2一t)e
一t
|
0
+∞
+e
一t
|
0
+∞
=1 又f(0)=0,故x=0为最小值点,所以f(x)的最小值为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/6YV4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.求A的特征值与特征向量.
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0。证明在(0,π)内f(x)至少有两个零点。
设函数f(x)=,则f(x)在(一∞,+∞)内()
设f(μ,ν)具有连续偏导数,且fμ’(μ,ν)+fν’(μ,ν)=sin(μ+ν)eμ+ν,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
函数y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求的值;
设函数f(x)=在(一∞,+∞)内连续,且f(x)=0,则常数a,b满足()
已知函数f(x)=。若x→0时,f(x)一a与xk是同阶无穷小,求常数k的值。
(2009年)设A,P均为3阶矩阵,PT为P的转置矩阵.且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为
随机试题
关于教育评估的可行性原则,正确的说法是
一建筑工人由高空坠落,左枕着地,伤后出现进行性意识障碍,右侧瞳孔逐渐散大,诊断应首先考虑
如图所示矩形截面,z轴过形心C,则该截面关于z、z1及z2轴的惯性距关系为( )。
债券股票等金融工具初次发行,供投资者认购投资的市场是()。
如果被审计单位的存货盘点在财务报表日以外的其他日期进行,注册会计师需要进行的补充考虑和测试不包括()。
协同办公:效率
根据《合同法》的有关规定,下列商业广告中,可以视为要约的是()。
甲、乙为夫妻,长期感情不和。2010年5月1日甲乘火车去外地出差,在火车上失踪,没有发现其被害尸体,也没有发现其在何处下车。2016年6月5日法院依照法定程序宣告甲死亡。之后,乙向法院起诉要求铁路公司对甲的死亡进行赔偿。关于甲被宣告死亡,下列哪些说法是正确
WheredidBettylivewhenshewasachild?
PASSAGEFOUR
最新回复
(
0
)