首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,a]上一阶连续可导,f(0)=0,令|f’(x)|=M.证明:|∫0af(x)dx|≤a2/2M.
设f(x)在[0,a]上一阶连续可导,f(0)=0,令|f’(x)|=M.证明:|∫0af(x)dx|≤a2/2M.
admin
2018-05-21
35
问题
设f(x)在[0,a]上一阶连续可导,f(0)=0,令
|f’(x)|=M.证明:|∫
0
a
f(x)dx|≤a
2
/2M.
选项
答案
由微分中值定理得f(x)-f(0)=f’(ξ)x,其中ξ介于0与x之间, 因为f(0)=0,所以|f(x)|=|f’(ξ)x|≤Mx,x∈[0,a], 从而|∫
0
a
f(x)dx|≤∫
0
a
|f(x)|dx≤∫
0
a
Mxdx=a
2
/2M.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Zr4777K
0
考研数学一
相关试题推荐
微分方程yy"-(y’)2=y4满足y(0)=1,y’(0)=1的特解为y=________。
an和bn符合下列哪一个条件可由发散()
设有直线L:及平面∏:4x一2y+z一2=0,则直线L()
设z=xg(x+y)+yφ(xy),其中gφ、具有二阶连续导数,则=_________。
设=1,且f"(x)>0,证明f(x)>x(x≠0).
设y=y(x)是二阶线性常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设二次型f(x1,x2,x3)=xTAx=x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,求k的取值范围.
设随机变量(X,Y)的概率密度为试求(I)(X,Y)的分布函数;(Ⅱ)(X,Y)的两个边缘概率密度;(Ⅲ)(X,Y)的两个条件密度;
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正反面各出现一次},A4={正面出现两次},则事件()
随机试题
影响绿茶色泽的主要物质是_______。
中国共产党领导的武装斗争,实质上就是
患者女,2008年5月30日入院。26岁,农民。因无明显诱因出现烦躁、焦虑、抑郁、怀疑被人议论和被害5个月,2月前出现四肢近端阵发性发绀,腕、足、踝关节红、肿、热、痛并指端发麻,进行性出现皮肤变黑、色素沉着、双侧颜面部呈对称性皮疹,口唇色素沉着并增厚,面
男,48岁,截瘫。骶尾部有一创面,面积2cm×2.5cm,深达肌层,有脓性分泌物,有臭味,创面周围有黑色坏死组织。对该创面正确的处理方法是
某资产类账户月初借方余额60000元,本月借方发生额120000元,贷方发生额150000元,则该账户月表余额为()。
鱼类食品有一定防治动脉粥样硬化和冠心病的作用,是因为含有()。
《威尼斯商人》的主题思想是什么?
任务分析
斯大林模式的突出特点是()。
A、她觉得行李不多B、想让男的帮她C、不要男的帮忙C
最新回复
(
0
)