已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.

admin2019-02-26  28

问题 已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.

选项

答案由AB=0知矩阵B的每一列都是方程组Ax=0的解,因此Ax=0必有非零解,要求其通解只要求出它的基础解系即可.而基础解系所含向量个数等于3一r(A),所以需要先确定A的秩r(A). 由于AB=0,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=2或r(A)=2. (1)当k≠9时,因r(A)=1,知Ax=0的基础解系含2个向量.又由AB=O可得 [*] 由于η1=(1,2,3)T,η2=(3,6,k)T线性无关,故η1,η2为Ax=0的一个基础解系,于是Ax=0的通解为 x=c1η1+c2η2,其中c1,c2为任意常数. (2)当k=9时,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Ax=0的基础解系由一个向量构成。又因为[*]=0,所以Ax=0的通解为x=c1(1,2,3)T,其中c1为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax1+bx2+cx3=0.不妨设a≠0,则η1=(一b,a,0)T,η2=(一c,0,a)T是Ax=0的两个线性无关的解,故Ax=0的通解为 x=c1η1+c2η2,其中c1,c2为任意常数.

解析 本题综合考查矩阵秩的概念、齐次线性方程组基础解系的概念及求解方法.注意当r(A)=1时,A的极大无关行向量组只含1个向量,故此时方程组Ax=0可经消元法化为同解方程组ax1+bx2+cx3=0.
转载请注明原文地址:https://kaotiyun.com/show/WT04777K
0

随机试题
最新回复(0)