首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2019-02-26
71
问题
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由AB=0知矩阵B的每一列都是方程组Ax=0的解,因此Ax=0必有非零解,要求其通解只要求出它的基础解系即可.而基础解系所含向量个数等于3一r(A),所以需要先确定A的秩r(A). 由于AB=0,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=2或r(A)=2. (1)当k≠9时,因r(A)=1,知Ax=0的基础解系含2个向量.又由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数. (2)当k=9时,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Ax=0的基础解系由一个向量构成。又因为[*]=0,所以Ax=0的通解为x=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0.不妨设a≠0,则η
1
=(一b,a,0)
T
,η
2
=(一c,0,a)
T
是Ax=0的两个线性无关的解,故Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
本题综合考查矩阵秩的概念、齐次线性方程组基础解系的概念及求解方法.注意当r(A)=1时,A的极大无关行向量组只含1个向量,故此时方程组Ax=0可经消元法化为同解方程组ax
1
+bx
2
+cx
3
=0.
转载请注明原文地址:https://kaotiyun.com/show/WT04777K
0
考研数学一
相关试题推荐
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,若C=,则|C|=
设A,B是两个随机事件,且0<P(A)<1,P(B)>0,P(B|)=P(B|A),则必有
设A,B皆为n阶矩阵,则下列结论正确的是().
设二维随机变量(X1,X2)的密度函数为f1(x1,x2),则随机变量(Y1,Y2)(其中Y1=2X1,Y2=X2)的概率密度f2(y1,y2)等于()
设A是m×n阶矩阵,则下列命题正确的是().
在下列方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是()
设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB=
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
(2003年)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数。(I)试将x=x(y)所满足的微分方程变换为y=y(z)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的
(2002年)设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f′(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a,b的值。
随机试题
我国关于妇女劳动保护的相关规定中指出,可安排女职工夜班的孩子年龄是
男,11个月。母乳喂养,近3个月来面色渐苍黄,时而腹泻,原可站立,现坐不稳,手足常颤抖。查体:面色苍黄,略水肿,表情呆滞,Hb80g/L,RBC2.0×1012/L,WBC6.04×109/L。该患儿最恰当的治疗是()
43岁患者,近1年月经不规则,周期20~30天,经期延长达10余天,月绎量增多,此次出血已20多天,量多,伴头晕、心悸,体格检查:外观贫血,妇检:阴道内经量血,宫颈光,宫口闭,宫体前位正常大小,软,无压痛,双附件正常。该患者的诊断考虑为
中小跨径桥梁静载试验,电子水准仪的测试精度优于全站仪。()
运输计划的短期目标一般是指月度经营目标。()
甲、乙二人各投篮一次,已知甲投中的概率为0.8,乙投中的概率为0.6,则甲、乙二人恰有一人投中的概率是().
Ifyoucan’tresistthechancetoputonabet,blameyourinsula—aregionofyourbrain.Scientiststhinkthatwhenthisbrain
TheroleofeyecontactinaconversationalexchangebetweentwoAmericansiswelldefined;speakersmakeacontactwiththeey
TheNBAlockout(停工)didnotfinishonThursdaynight,butitwasnearlyanend,amidlight-heartedjokesandaggressivewordchoi
()破产法()民法()专利法()物权法
最新回复
(
0
)