首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)是连续且单调递增的奇函数,设F(χ)=∫0χ(2u-χ)f(χ-u)du,则F(χ)是( )
设f(χ)是连续且单调递增的奇函数,设F(χ)=∫0χ(2u-χ)f(χ-u)du,则F(χ)是( )
admin
2017-11-30
64
问题
设f(χ)是连续且单调递增的奇函数,设F(χ)=∫
0
χ
(2u-χ)f(χ-u)du,则F(χ)是( )
选项
A、单调递增的奇函数
B、单调递减的奇函数
C、单调递增的偶函数
D、单调递减的偶函数
答案
B
解析
令χ-u=t,则
F(χ)=∫
0
χ
(χ-2t)f(t)dt,F(-χ)=∫
0
-χ
(-χ-2t)f(t)dt,
令t=-u,
F(-χ)=∫
0
χ
(-χ+2u)f(-u)du=∫
0
χ
(χ-2u)f(-u)du。
因为f(χ)是奇函数,
f(χ)=-f(-χ),F(-χ)=∫
0
χ
(χ-2u)f(u)du,
则有F(χ)=-F(-χ)为奇函数。
F′(χ)=∫
0
χ
f(t)dt-χf(χ),
由积分中值定理可得∫
0
χ
f(t)dt=f(ξ)χ,ξ介于0到χ之间,
F′(χ)=f(ξ)χ-χf(χ)=[f(ξ)-f(χ)]χ,
因为f(χ)单调递增,当χ>0时,ξ∈[0,χ],f(ξ)-f(χ)<0,所以F′(χ)<0,F(χ)单调递减;当χ<0时,ξ∈[χ,0],f(ξ)-f(χ)>0,所以F′(χ)<0,F(χ)单调递减。所以F(χ)是单调递减的奇函数。
转载请注明原文地址:https://kaotiyun.com/show/Vfr4777K
0
考研数学一
相关试题推荐
求不定积分
试证明:曲线恰有三个拐点,且位于同一条直线上.
设A为m×n阶矩阵,且r(A)=m<n,则().
设随机变量X,Y独立同分布,且设随机变量U=max{X,Y),V=min{X,Y).求二维随机变量(U,V)的联合分布;
设二维非零向量α不是二阶方阵A的特征向量.若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
设A(一1,0,4),π:3x一4y+z+10=0,L:,求一条过点A与平面π平行,且与直线L相交的直线方程.
f(x)在[-1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f’’’(ξ)=3.
设则下列级数中一定收敛的是
甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在一昼夜内到达的时刻是等可能的.如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中的任何一艘都不需要等候码头空出的概率.
随机试题
对买方而言,最好的支付方式是()
此所谓“藉寇兵而赍盗粮”者也。
《郑伯克段于鄢》选自《左传》。()
女,20岁。上前牙松动3年。检查:上切牙松动Ⅱ度扇形移位,口腔卫生较好,初步印象为局限性青少年牙周炎。为确诊还应做的最重要的检查是
泻白散与清骨散的组成中均含有的药物是
按照运输方式,国际货物运输保险包括陆上货物运输保险、航空货物运输保险、邮递货物保险和()。
A公司于2008年1月10日与B公司签订一份标的额为100万元的买卖合同,合同约定采用汇票结算方式。2008年2月1日,A公司按照合同约定发出货物,B公司于2月10日签发一张见票后1个月付款的银行承兑汇票。3月5日A公司向C银行提示承兑并于当日获得承兑。3
网络的配置管理主要目的在于【 】网络和系统的配置信息以及网络内各设备的状态和连接关系。
trade,above,expiration,respond,strike,profitable,seller,how,most,financialIngeneral,anoptiongivestothebuyer
TheoriesonWhyWeLikeOtherPeopleInordertofigureoutthereasonswhywefallinlikeandwhywefallinlovewithpeop
最新回复
(
0
)