首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+ 2b)T,β=(1,3,一3)T,试讨论当a,b为何值时, (Ⅰ)β不能由α1,α2,α3线性表示; (Ⅱ) β可由α1,α2,α3惟一地线性表示,并求出表示式; (Ⅲ
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+ 2b)T,β=(1,3,一3)T,试讨论当a,b为何值时, (Ⅰ)β不能由α1,α2,α3线性表示; (Ⅱ) β可由α1,α2,α3惟一地线性表示,并求出表示式; (Ⅲ
admin
2017-04-23
37
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,一3a)
T
,α
3
=(一1,一b一2,a+ 2b)
T
,β=(1,3,一3)
T
,试讨论当a,b为何值时,
(Ⅰ)β不能由α
1
,α
2
,α
3
线性表示;
(Ⅱ) β可由α
1
,α
2
,α
3
惟一地线性表示,并求出表示式;
(Ⅲ) β可由α
1
,α
2
,α
3
线性表示,但表示式不惟一,并求表示式.
选项
答案
设有一组数x
1
,x
2
,x
3
,使得 x
1
α
1
+x
2
α
2
+x
3
α
3
=β (*) 对方程组(*)的增广矩阵施行初等行变换: [*] (1)当a=0,b为任意常数时,有 [*] 可知r(A)≠[*],故方程组(*)无解,β不能由α
1
,α
2
,α
3
线性表示. (2)当a≠0,且a≠b时,r(A)=[*]=3,方程组(*)有唯一解:x
1
=1一[*],x
2
=[*],x
3
=0.故此时β可由α
1
,α
2
,α
3
唯一地线性表示为: [*] (3)当a=b≠0时,对[*]施行初等行变换: [*] 可知r(A)=[*]=2,故方程组(*)有无穷多解,通解为:x
1
=1一[*],x
2
=[*]+c,x
3
=c,其中c为任意常数.故此时β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为β=[*]α
2
+cα
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/6kt4777K
0
考研数学二
相关试题推荐
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定exy-xy=2和ex=.
设函数u=f(x,xy,xyz)具有连续的二阶偏导数,则=________.
设函数tf(x2+y2-t2)dt,其中函数f具有连续的导数,求.
证明若un(un≥0)收敛,则un2收敛,反之不成立,举例。
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设f(x+y,x-y)=ex2+y2(x2-y2),求函数f(x,y)和的值.
设sOy,平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
随机试题
A.急性血行播散性肺结核B.肺泡细胞癌C.肺间质纤维化D.肺炎E.支气管扩张女性,42岁,进行性呼吸困难3个月,无发热,胸片双肺弥漫结节影,应考虑
人体在强磁场内,宏观质子角动量的方向是
转移瘤细胞的倍增时间较原发瘤(),生长速度较原发瘤()
卵巢肿瘤最常见的并发症是
神经冲动释放的去甲肾上腺素主要
依据《特种设备安全监察条例》的规定,特种设备安全监督管理部门在办理有关行政审批事项时,应当自受理申请之日起()日内,作出许可、核准或者不予许可、核准的决定。
某企业为增值税一般纳税人,2011年1月15日通过银行划账上缴2010年12月应纳增值税额12000元,则正确的会计处理为()。
与早期行为主义关系最密切的概念是()
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
A、Themanwilldoeverything.B、Themanneedsarest.C、Aliceofferstohelp.D、Aliceisquitebusy.D本题问的是“从对话中可得知什么信息”,对话中提到A
最新回复
(
0
)