首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
admin
2016-09-12
66
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)n=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/6mt4777K
0
考研数学二
相关试题推荐
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为,ρxy=-0.5,且P(aX+bY≤1)=0.5,则().
求∫(arcsinx)2dx.
求下列函数的不定积分。
求∫d∫df(x).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
求函数在区间(0,2π)内的间断点,并判断其类型。
一商家销售某种商品的价格满足关系p=7-0.2x(万元/吨),x为销售量(单位:吨),商品的成本函数是C=3x+1(万元)t为何值时,政府税收总额最大。
设函数f(x)、g(x)满足条件:f’(x)=g(x),g’(x)=f(x).又f(0)=0,g(x)≠0,试求由曲线与x=0,x=t(t>0),y=1所围成的平面图形的面积。
有两个级数,根据已知条件进行作答。若两个级数:两个都发散,其和如何?
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
随机试题
对于大多数化学反应,升高温度,反应速率增大。()
不属于方剂运用变化的项是
给予肺炎高热患者降温处理时,正确的操作是
关于手足搐搦症的隐性体征正确的是
关于存货叙述正确的是( )。
甲市公安机关的法医董某,一天在送孩子去幼儿园的途中亲眼看见了李某抢劫王某,造成王某重伤,下列说法错误的有()。
(2017年真题)在某个时期内,个体对某种刺激特别敏感,过了这个时期,同样的刺激则影响很小或没有影响。这个时期称为()。
教师的医疗同当地国家公务员享受同等的待遇;()对教师进行身体健康检查,并因地制宜安排教师进行休养。
下图为我国4幅省级行政区域图,按图完成下列问题。少数民族中人数最多的民族所在的省级行政区域是()。
假设你是一个企业的质检员,厂里准备引进一台新设备,可以更好的提高生产力,你该怎么办?
最新回复
(
0
)