首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
admin
2016-09-12
57
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)n=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/6mt4777K
0
考研数学二
相关试题推荐
计算.
求∫(arcsinx)2dx.
求下列函数的不定积分。
证明方程x3-9x-1=0恰有3个实根。
设某种商品的单价为p时,售出的商品数量Q可以表示成,其中a,b,c均为正数,且a>bc。要使销售额最大,商品单价应取何值?最大销售额是多少?
证明:若p>1,则对于[0,1]内任意x,有≤xp+(1-x)p≤1
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫xag(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt证明:∫abxf(x)dx≤∫abxg(x)dx。
曲线的y=-6x2+4x4的凸区间为________。
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
(99年)函数上的平均值为______.
随机试题
有关痈的处理方法下列哪项是错误的______。
关于房性期前收缩的叙述,错误的是
环磷酰胺对下列哪种肿瘤疗效最好
患者平素性急易怒,时有胁胀,近日胁胀加重,伴食欲不振,食后腹胀,便溏,舌苔薄白,脉弦。其证候是
淫羊藿的炮制方法为
2018年5月份,某投资者卖出一张7月到期、执行价格为14900点的恒指看涨期权,权利金为500点,同时又以300点的权利金卖出一张7月到期、执行价格为14900点的恒指看跌期权。当恒指为()点时,可以获得最大盈利。
违约金
反映出版社发展速度的指标主要有()等。
Ifthepopulationkeepsongrowing,therewilleventuallynotbeenoughresourceslefttosustainlifeontheearth.
班级授课制(班级上课制)【2010年-杭州师大/辽宁师大】【2011年-南京师大/江西师大】【2013年-东北师大/重庆师大】【2014年-四川师大】【2015年-江西师大/哈尔滨师大】【2016一江西师大/贵州师大/西北师大/北师大】【2016年-杭州师
最新回复
(
0
)