首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
admin
2016-09-12
65
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)n=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/6mt4777K
0
考研数学二
相关试题推荐
设f(x2-1)=,且f[ψ(x)]=lnx,求∫ψ(x)dx。
求.
求下列函数的不定积分。
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在ξ∈(0,1),使得f(ξ)=1-ξ.
证明:若p>1,则对于[0,1]内任意x,有≤xp+(1-x)p≤1
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使得f(ξ1)=f(ξ2)=0.
设在区间[a,b]上f(x)>0,f’(x)<0,f"(x)>0,令S1=∫abf(x)dx,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a)则________.
设F(x)=f(x)g(x),其中f’(a)存在,g(x)在x=a处连续但不可导,则f(a)=0是f(x)在x=a处可导的________条件。
设函数,当k为何值时,f(x)在点x=0处连续.
上的平均值为_______.
随机试题
起动机电磁开:是保持线圈搭铁点脱开如何处理?
Bythistimenextweek,thewinners______theirawards.
患者女性,19岁,哮喘重度急性发作而来急诊。查体见患者端坐呼吸,大口呼吸,大汗淋漓,说话不连贯。下列体征中预示病情严重的是
甲股份有限公司(本题下称“甲公司”)为上市公司,20×7年至20×9年与企业合并、长期股权投资有关的资料如下:(1)20×7年1月20日,甲公司与无关联关系的丙公司(非上市公司)签订购买其20%股权的合同,支付购买价款2000万元。(2)
金山岭长城被誉为“第二八达岭”。()
简述人本主义心理学基本观点。
以下历史事件发生的先后顺序不正确的是()。
值班人员的精神状态、一言一行均关系到本机关的威信与形象,因此,值班人员在工作中必须遵循一系列制度规范,其中最根本的制度是()。
U-Boot是一种通用的引导加载程序,对___________【75】系列处理器支持最为丰富,对___________【76】操作系统的支持最为完善。
I’dratherhavearoomofmyown,howeversmallitis,thansharearoomwithsomeoneelse.
最新回复
(
0
)