首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
admin
2016-09-12
89
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)n=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/6mt4777K
0
考研数学二
相关试题推荐
设X的分布函数为且Y=X2-1,则E(XY)=________.
设随机变量X的密度函数为[28则P{|X-E(X)|<2D(X)}=________.
求下列不定积分。
求下列不定积分。
求不定积分.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使得f(ξ1)=f(ξ2)=0.
求曲线及r2=cos2θ所围成图形的公共部分的面积。
设在区间[a,b]上f(x)>0,f’(x)<0,f"(x)>0,令S1=∫abf(x)dx,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a)则________.
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f"(x)|≤b,其中a.b都是非负常数,c是(0,1)内任意一点.证明
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)利用上一小题的结论计算定积分.
随机试题
用非清水压井注水泥塞时,修井液前后均必须替入适量()作隔离液。
Itisoftenclaimedthatnuclearenergyissomethingwecannotdowithout.Weliveinaconsumersocietywherethereisanenorm
测量下列哪条径线可间接推测骨盆入口前后径长短
焊接钛制义齿时,采取的主要措施是
邪热夹酒毒上壅的舌象是()
目前动物疫病中,人畜共患传染病已达()种。
()是指经中国人民银行批准可以开展结算代理业务的金融机构法人,受市场其他参与者的委托,为其办理债券结算业务的制度。
某电器生产企业为增值税一般纳税人,2016年度会计自行核算取得营业收入25000万元、营业外收入3000万元、投资收益1000万元,扣除营业成本12000万元、营业外支出1000万元、税金及附加300万元、管理费用6000万元、销售费用5000万元、财务费
.旅游行程单是包价旅游合同的重要组成部分。()
【2016江苏ANO.23】风是地球上空的传送带,它将大陆的沙尘吹向海洋,又将海洋的水汽吹向大陆,沙尘和水汽相遇,便能结合为云,最终化作降水,可见沙尘不仅在土壤的分布和补充上扮演着重要的角色.而且在全球的水循环上也扮演着重要的角色。可以说,________
最新回复
(
0
)