首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为p1=(1,2,2)T,p2=(2,1,一2)T,求A。
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为p1=(1,2,2)T,p2=(2,1,一2)T,求A。
admin
2019-01-19
79
问题
设三阶实对称矩阵A的特征值为λ
1
=1,λ
2
=一1,λ
3
=0;对应λ
1
,λ
2
的特征向量依次为p
1
=(1,2,2)
T
,p
2
=(2,1,一2)
T
,求A。
选项
答案
因为A为实对称矩阵,故必存在正交矩阵Q=(q
1
,q
2
,q
3
),使 QTAQ=Q
-1
AQ=[*]=A。 将对应于特征值λ
1
,λ
2
的特征向量[*]单位化,得 [*] 由正交矩阵的性质,q
3
可取为 [*]=0 的单位解向量,则由 [*] 可知 q
3
=[*],因此 A=QΛQ
T
=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6nP4777K
0
考研数学三
相关试题推荐
设A是n阶可逆方阵,将A的第i行与第j行对换后所得的矩阵记为B.(1)证明B可逆;(2)求AB-1.
计算二次积分=_______.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T,都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
已知二次型f(χ1,χ2,χ3)=χTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
总体X~N(2,σ2),从X中抽得简单样本X1,…,X2.试推导σ2的置信度为1-α的置信区间.若样本值为1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.
设n阶矩阵A,B可交换、即AB=BA,且A有n个互不相同的特征值.证明:(1)A的特征向量都是B的特征向量;(2)B相似于对角矩阵.
设函数y=y(χ)由方程y-χey=1所确定,试求=_______和=_______.
设X1,X2,…,Xn(n>1)是取自总体X的简单随机样本,且DX=σ2>0,X为样本均值,则Xn一X与X的相关系数为
已知曲线y=f(x)在x=1处的切线方程为y=x一1,求。
已知线性方程组的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,b12,…,b1,2n)T。试写出线性方程组的通解,并说明理由。
随机试题
显示器所表现的亮度信号的等级差别称为
A.伤寒B.血行播散性肺结核C.白血病D.败血症E.肺结核
建设工程的施工文件档案管理的内容不包括工程()
世贸组织的公平贸易原则规定成员方可以用()手段对抗不公平贸易行为。
古语有云:“百善孝为先。”二十四孝故事在民间广泛流传,以下属于二十四孝成语故事的有()。
警容风纪,是指人民警察在()等方面的行为规范。
北回归线没有穿越下列哪一著名建筑所在的国家:
求幂级数(n2+1)xn的和函数.
ForShakespeare,oldageas"secondchildishness"fortheyhavethesame______.Fromthetwopatientsmentionedinthepassage,
A、Ithasbeenthebestsellerforweeks.B、Itadvisespeopletochangethemselves.C、Itisbeingsoldataverylowprice.D、Itd
最新回复
(
0
)