首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
admin
2018-11-21
114
问题
设f(x)=
(a
k
coskx+b
k
sinkx),其中a
k
,b
k
(k=1,2,…,n)为常数.证明:
(Ⅰ)f(x)在[0,2π)必有两个相异的零点;
(Ⅱ)f
(m)
(x)在[0,2π)也必有两个相异的零点.
选项
答案
(Ⅰ)令F(x)=[*],显然,F’(x)=f(x).由于F(x)是以2π为周期的可导函数,故F(x)在[0,2π]上连续,从而必有最大值与最小值.设F(x)分别在x
1
,x
2
达到最大值与最小值,且x
1
≠x
2
,x
1
,x
2
∈[0,2π),则F(x
1
),F(x
2
)也是F(x)在(一∞,+∞)上的最大值,最小值,因此x
1
,x
2
必是极值点.又F(x)可导,由费马定理知F’(x
1
)=f(x
1
)=0,F’(x
2
)=f(x
2
)=0. (Ⅱ)f
(m)
(x)同样为(Ⅰ)中类型的函数即可写成f
(m)
(x)=[*](α
k
coskx+β
k
sinkx),其中α
k
,β
k
(k=1,2,…,n)为常数,利用(Ⅰ)的结论,f
(m)
(x)在[0,2π)必有两个相异的零点.
解析
即证:f(x)=
在[0,2π)存在两个相异零点.只要证
在[0,2π)有两个极值点.注意:F(x)是周期为2π的周期函数,F(x)在[0,2π)的最大与最小值点也是F(x)在(一∞,+∞)上的最大与最小值点,因而必是极值点.
转载请注明原文地址:https://kaotiyun.com/show/6pg4777K
0
考研数学一
相关试题推荐
设vn均收敛,则下列命题中正确的是().
设f(x)=若f(x)在点x=0处可导,则a=__________,b=__________.
设f(0)=g(0),f′(0)=g′(0),f″(x)<g″(x)(当x>0时),证明当x>0时,f(x)<g(x).
若函数F(x,y,z)满足F″xx+F″yy+F″zz=0,证明其中Ω是光滑闭曲面S所围的区域,是F在曲面S上沿曲面S的外向法线的方向导数.
将函数f(x)=在x=0处展成幂级数.
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分ydS=().
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0,设Z=X-Y。(Ⅰ)求Z的概率密度f(z;σ2);(Ⅱ)设Z1,Z2,…,Zn为取自总体Z的简单随机样本,求σ2的最大似然估计量
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
n为自然数,证明:∫02πcosnxdx=∫02πsinnxdx=
随机试题
下止点:
下列关于肱二头肌的叙述,正确的是()
指出不是选择预防接种重点地区的标准
施工现场使用的临时用电线路,当发生故障或过载时,就有可能造成电气失火。
【案例四】背景材料:某投资公司建造一幢办公楼,采用公开招标方式选择施工单位。招标文件要求:提交投标文件和投标保证金的截止日期为2013年5月30日。该投资公司于2013年3月6日发出招标公告,共有5家建筑施工单位参加了投标。第5家施工单
Hersister______arichman.They______fortwentyyears.
There(1)_____notonetypeofreadingbutseveralaccordingtoyourreasonsforreading.Toreadefficiently,youhaveto(2)__
已知有5个进程共享一个互斥段,如果最多允许2个进程同时进入互斥段,则相应的信号量的变化范围是__________。
变量m的值为8,m的地址为1010,若欲使p为指向m的指针变量,则下列赋值正确的是()。
收益率曲线变化的类型主要有水平变化、斜率变化和曲度变化三种类型。()
最新回复
(
0
)