首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
admin
2018-11-21
91
问题
设f(x)=
(a
k
coskx+b
k
sinkx),其中a
k
,b
k
(k=1,2,…,n)为常数.证明:
(Ⅰ)f(x)在[0,2π)必有两个相异的零点;
(Ⅱ)f
(m)
(x)在[0,2π)也必有两个相异的零点.
选项
答案
(Ⅰ)令F(x)=[*],显然,F’(x)=f(x).由于F(x)是以2π为周期的可导函数,故F(x)在[0,2π]上连续,从而必有最大值与最小值.设F(x)分别在x
1
,x
2
达到最大值与最小值,且x
1
≠x
2
,x
1
,x
2
∈[0,2π),则F(x
1
),F(x
2
)也是F(x)在(一∞,+∞)上的最大值,最小值,因此x
1
,x
2
必是极值点.又F(x)可导,由费马定理知F’(x
1
)=f(x
1
)=0,F’(x
2
)=f(x
2
)=0. (Ⅱ)f
(m)
(x)同样为(Ⅰ)中类型的函数即可写成f
(m)
(x)=[*](α
k
coskx+β
k
sinkx),其中α
k
,β
k
(k=1,2,…,n)为常数,利用(Ⅰ)的结论,f
(m)
(x)在[0,2π)必有两个相异的零点.
解析
即证:f(x)=
在[0,2π)存在两个相异零点.只要证
在[0,2π)有两个极值点.注意:F(x)是周期为2π的周期函数,F(x)在[0,2π)的最大与最小值点也是F(x)在(一∞,+∞)上的最大与最小值点,因而必是极值点.
转载请注明原文地址:https://kaotiyun.com/show/6pg4777K
0
考研数学一
相关试题推荐
设f(x)在点x=a处可导,则=().
求
设A,B均为n阶实对称矩阵,则A与B合同的充分必要条件是().
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
设L为曲线y=上从O(0,0)到的曲线段,则cosy2dx-2xysiny2dy=_______。
已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段,计算曲线积分3x2ydx+(x3+x-2y)dy。
设z=,其中f具有二阶连续偏导数,g具有二阶连续导数,求
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数。(Ⅰ)证明对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式。
证明:∫0sinnxcosnxdx=2-n∫0sinnxdx.
随机试题
一般来说,背景吸收是使吸光度增加而产生正误差。()
下列病变不是T1及T2加权像均呈高信号的是
A、刺痛拒按,固定不移,舌暗,脉涩B、气短疲乏,脘腹坠胀,舌淡,脉弱C、胸胁胀闷窜痛,时轻时童,脉弦D、面色淡白,口唇爪甲色淡,舌淡,脉细E、少气懒言,疲乏无力,自汗,舌淡,脉虚血瘀证可见的症状是
《公司法》对公司的出资形式的限额做出限制的是( )。
消火栓的间距应小于或等于()。
常用的确定设备最佳更新期的方法有低劣化数值法和()。
为了预防病毒,在计算机中安装了操作系统补丁(windowsupdate)的防病毒软件,也按时升级了病毒定义文件,仍旧被种了木马程序(即被感染病毒),最不可能的原因是()。
以可见光波的长短为序,人类感觉到的颜色依次为()。
汉代选拔和任用官吏的方法有()
在计算机指令中,规定其所执行操作功能的部分称为()。
最新回复
(
0
)