首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-l,2,0)T, 则 求α1,α2,α3,α4,β的一个极大无关组.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-l,2,0)T, 则 求α1,α2,α3,α4,β的一个极大无关组.
admin
2019-08-27
65
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),若Ax=β的通解为
(-1,1,0,2)
T
+k(1,-l,2,0)
T
,
则
求α
1
,α
2
,α
3
,α
4
,β的一个极大无关组.
选项
答案
因为(-1,1,0,2)
T
是Ax=β的解,则β=-α
1
+α
2
+2α
4
. 又因为(1,-1,2,0)
T
是Ax=0的解,则α
1
一α
2
+α
3
=0.所以,β和α
3
都可由α
1
,α
2
,α
4
线性表示. 又由R(α
1
,α
2
,α
3
,α
4
,β)=R(α
1
,α
2
,α
3
,α
4
)=3,所以,α
1
,α
2
,α
4
是极大无关组.
解析
由条件中所给定的方程组的解,来确定向量之间的线性关系.
转载请注明原文地址:https://kaotiyun.com/show/72A4777K
0
考研数学二
相关试题推荐
(I)计算∫0nπtsint|dt,其中n为正整数;(Ⅱ)求t|sint|dt.
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量是ξ3.(I)问ξ1﹢ξ2是否是A的特征向量?说明理由;(Ⅱ)问ξ2﹢ξ3是否是A的特征向量?说明理由;(Ⅲ)证明任意3维非零向量β都是A2的特征向
求微分方程y’’一a(y’)2=0(a>0)满足初始条件y|x=0=0,y’|x=0=一1的特解。
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0x(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
设数列则当n→∞时,xn是
设A,B为同阶方阵。举一个二阶方阵的例子说明第一小题的逆命题不成立;
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“P≥Q”表示可由性质P推出性质Q
设z=f(x2+y2+z2,xyz)且f一阶连续可偏导,则=_______
求极限,其中n是给定的自然数.
设y=y(x)由yexy+xcosx-1=0确定,求dy|x=0=_________
随机试题
“计件工资奖励工资”的提出者是()
Junglecountryisnotfriendlytoman,butitispossibletosurvivethere.Youmusthavetheright【21】andyoumustknowafewi
A.控制系统B.受控系统C.反馈信息D.控制信息动脉壁上的压力感受器感受动脉血压变化,使相应的传入神经产生的动作电位可看作是
不能用于检测血清总IgE的是()
以下费用中,属于监理直接成本的有( )。
平硐开拓方式与立井、斜井开拓方式的主要区别是()。
A、64B、72C、80D、88D(左下数字-右上数字)×(左上数字-右下数字)=中间数字。(14-3)×(18-10)=(88),故本题选D。
茶树:茶叶:茶水
设L是圆域x2+y2≤-2x的正向边界曲线,则(x3-y)dx+(x-y3)dy等于()。
ThephotographertimedhisvisittoIndonesiato______withtheharvestfestivalthattakesplaceeachyearthroughoutthecoun
最新回复
(
0
)