首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是2×4矩阵,其中 Ax=0有基础解系α1=( 1,1,2,1)T,α2=(0,-3,1,0)T; Bx=0有基础解系β1=(1,3,0,2)T,β1=(1,2,-1,a)T. 若Ax=0和Bx=0有非零公共解,求参数α的值及公共解.
已知A,B均是2×4矩阵,其中 Ax=0有基础解系α1=( 1,1,2,1)T,α2=(0,-3,1,0)T; Bx=0有基础解系β1=(1,3,0,2)T,β1=(1,2,-1,a)T. 若Ax=0和Bx=0有非零公共解,求参数α的值及公共解.
admin
2018-07-23
63
问题
已知A,B均是2×4矩阵,其中
Ax=0有基础解系α
1
=( 1,1,2,1)
T
,α
2
=(0,-3,1,0)
T
;
Bx=0有基础解系β
1
=(1,3,0,2)
T
,β
1
=(1,2,-1,a)
T
.
若Ax=0和Bx=0有非零公共解,求参数α的值及公共解.
选项
答案
若Ax=0和Bx=0有非零公共解,则非零公共解既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出,设非零公共解为 η=x
1
α
1
+x
2
α
2
=x
3
β
1
+ x
4
β
2
. 于是 x
1
α
1
+x
2
α
2
-x
3
β
1
-x
4
β
2
=0. (*) 对(α
1
,α
2
)作初等行变换, [*] 当a=3时,方程组(*)有非零解k(-1,1,-2,1)
T
(k是任意非零常数).此时Ax=0和Bx=0的非零公共解为 η=k(-α
1
+α
2
)=k(-1,-4,-1,-1)=k
1
(1, 4, 1, 1)
T
. 其中k
1
是任意非零常数. 或 η=k(-2β
1
+β
2
)=k
2
(1, 4, 1, 1)
T
. 其中k
2
是任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/77k4777K
0
考研数学二
相关试题推荐
曲线y=xe-x(0≤x
证明下列命题:设f(x,y)定义在全平面上,且则f(x,y)恒为常数;
根据题意可知方程组(Ⅱ)中方程组个数
从点P1(1,0)作x轴的垂线,交抛物线y=x2于点Q1(1,1),再从Q1作这条抛物线的切线与x轴交于P2,然后又从P2作x轴的垂线,交抛物线于点Q2,依次重复上述过程得到一系列的点P1,Q1,P2,Q2,…,Pn,Qn,…,求
已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位矩阵,求X.
设当x→0时,sin(sin2x)ln(1+x2)是比xsinxn高阶无穷小,而xsinxn是比(ex2-1)高阶无穷小.则正整数n=().
函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=__________.
设f(x)在x=0的某邻域内连续,若=2,则f(x)在x=0处().
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a一δ,a+δ)时,必有()
设函数f(u)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
随机试题
简述第一审刑事判决书事实部分包括的内容。
掌浅弓:
关于月经的描述正确的是
某成年男性,政府公务员,平均每天能量和营养素摄入量如下:能量摄入量为2400kcal,维生素B11.4mg,维生素B20.76mg,烟酸15mg,维生素A800μgRE,维生素C100mg。为了提高该营养素摄入量,应增加哪类食物的摄入量
β–内酰胺类抗生素有()。
根据支付结算法律制度的规定,下列资金中,可以转入个人人民币卡账户的有()。
中华文明五千年的历史沉淀给我们留下了无数瑰宝,这不仅是灿烂的中华文化的见证,也是古老的中国献给世界的遗产。下列关于我国的“世界文化遗产”,表述有误的一项是:
与十进制数291等值的十六进制数为______。
Wheredidtheconversationmostlyprobablytakeplace?
A、Attractive.B、Dull.C、Unattractive.D、Logical.A原文对比了文科学生和理工科学生,说“另一方面,在他们看来,文科学生就要活跃得多。”并提到他们“被认为具有吸引力”。故A正确。
最新回复
(
0
)