首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,矩阵B=(μE+A)n,其中μ是实数,E是单位阵.求对角阵Λ,使B~Λ,并讨论B的正定性.
设矩阵,矩阵B=(μE+A)n,其中μ是实数,E是单位阵.求对角阵Λ,使B~Λ,并讨论B的正定性.
admin
2019-08-11
42
问题
设矩阵
,矩阵B=(μE+A)
n
,其中μ是实数,E是单位阵.求对角阵Λ,使B~Λ,并讨论B的正定性.
选项
答案
由[*]=(λ+2)[(λ-1)
2
-1]=(λ+2)λ(λ-2),知A有特征值λ
1
=-2,λ
1
=0,λ
3
=2. 由于A是实对称矩阵(或A有三个不同的特征值),故[*],且存在正交矩阵P,使得P
-1
AP=Λ
1
故A=PΛ
1
P
-1
,代入矩阵B,有 B=(μE+A)
n
=(μP
-1
+PΛ
1
P
-1
)
n
=[P(μE+Λ
1
)P
-1
]
n
=p(μE+Λ
1
)
n
P
-1
[*] 当n=2k(k=0,1,2,…)且μ≠0,μ≠0,μ≠-2时,Λ正定,则B正定; 当n=2k+1(k=0,1,2,…)且μ>2时,Λ正定,则B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/78N4777K
0
考研数学二
相关试题推荐
设A=,B为三阶矩阵,r(B*)=1且AB=O,则t=_________.
设y=f(lnx)ef(x),其中f(x)可微,则dy=________.
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设.则存在初等矩阵使得B=()[img][/img]
设是可逆矩阵,且,若,则C-1=______.[img][/img]
设当x∈[-1,1]时,f(x)连续,F(x)=∫-11|x-t|f(t)dt,x∈[-1,1].若f(x)>0(-1≤x≤1),证明曲线y=F(x)在区间[-1,1]上是凹的.
设当x∈[-1,1]时,f(x)连续,F(x)=∫-11|x-t|f(t)dt,x∈[-1,1].若f(x)为偶函数,证明F(x)也是偶函数;
(05年)设函数f(x)连续,且f(0)≠0,求极限
(08年)求极限
随机试题
手工钨极氩弧焊时,填充焊丝的方法有哪些?各有何特点?
夏季,某奶牛场部分青年牛出现体温升高、精神沉郁、食欲不振、奶产量下降症状;同时患牛眼睛发生羞明、流泪、眼睑痉挛和闭锁、局部增温,并表现出角膜炎和结膜炎症状,多数病牛形成圆锥形角膜。该病的病原是
慢性肾炎的临床表现不包括
房地产经纪执业规范的适用对象是()。[2010年考试真题]
企业风险管理基本框架包括()个方面的内容?
在强势有效市场中,下列描述正确的是()。Ⅰ.任何人都不可能通过对公开或内幕信息的分析获取额外收益Ⅱ.证券价格总是能及时充分地反映所有相关信息Ⅲ.每一位投资者都掌握了有关证券产品的所有公开可得信息Ⅳ.基本面分析是无效的
下面关于证券公司代销金融产品与委托人签署书面代销合同,应约定的是()。I.证券公司对金融产品承担担保责任Ⅱ.因金融产品设计产生的责任由委托人承担Ⅲ.因金融产品设计产生的责任由委托人承担Ⅳ.双方在信息披露、风险
(2017年)关于拉弗曲线的说法,正确的是()。
下列协议中不是电子邮件协议的是()。
Ifthesunhasenough【C1】______towarmandlightthewholeearth,itmusthaveenoughpowertodootherthings,【C2】______.Canw
最新回复
(
0
)