首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)计算A2,并将A2用A和E表出; (2)设A是二阶方阵,当k>2时,证明:Ak=0的充分必要条件为A2=0.
设 (1)计算A2,并将A2用A和E表出; (2)设A是二阶方阵,当k>2时,证明:Ak=0的充分必要条件为A2=0.
admin
2015-08-17
35
问题
设
(1)计算A
2
,并将A
2
用A和E表出;
(2)设A是二阶方阵,当k>2时,证明:A
k
=0的充分必要条件为A
2
=0.
选项
答案
(1)[*]令[*]解得x=a+d,y=bc-ad.即A
2
=(A+d)A+(bc-ad)E.(3)充分性 A
2
=0→A
k
=0,k>2,显然成立;必要性 A
k
=O→|A|=ad-bc=0,由(1)知A
2
=(a+d)A,于是A
k
=(a+d)
k-1
A=O→=0或a+d=0,从而有A
2
=(a+d)A=O.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Qw4777K
0
考研数学一
相关试题推荐
求方程y"+2my’+n2y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(x)),B(b,f(b))的直线与曲线y=f(x)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f’’(ξ)=0.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是它的解.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Yi
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)=f(ξ)=f(2)-2f(1).
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
已知齐次线性方程组有非零解,且是正定矩阵.求a;
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
随机试题
补骨脂具有而益智仁不具有的功效是
鉴别囊肿与实性肿瘤最可靠的依据是
下列关于恶性黑色素瘤TNM分期原则的描述中错误的是
上腹部压痛,应首先考虑的是
属治疗流行性脑脊髓膜炎的首选药物之一的是
反映压力机生产率的技术参数是()。
A公司拟发行债券和股票筹资,原定方案为:筹资总额500万元,债券和普通股的资金成本率分别为10%和15%。两种筹资方式筹集的资金分别占筹资总额的40%和60%。根据上述资料,回答下列问题:公司财务人员提出另一个筹资方案如下:发行债券100万元,优先股2
()是养老金的支付形式。
解放思想,实事求是的首要条件是()。
NewHopesforPreventingAIDSThesuccessofanti-retroviral(抑止肿瘤病毒)drugsintreatingHIVisgettingresearchersatthe1
最新回复
(
0
)