首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解: (Ⅰ)(x-2)dy=[y+2(x-2)3]dx; (Ⅱ)(1+y2)dx=(arctany-x)dy; (Ⅲ)y’+2y=sinx; (Ⅳ)eyy’-=x2 (Ⅴ) (Ⅵ)(x2-3y2)x+(3x2-y2)=0;
求下列微分方程的通解: (Ⅰ)(x-2)dy=[y+2(x-2)3]dx; (Ⅱ)(1+y2)dx=(arctany-x)dy; (Ⅲ)y’+2y=sinx; (Ⅳ)eyy’-=x2 (Ⅴ) (Ⅵ)(x2-3y2)x+(3x2-y2)=0;
admin
2020-03-10
99
问题
求下列微分方程的通解:
(Ⅰ)(x-2)dy=[y+2(x-2)
3
]dx;
(Ⅱ)(1+y
2
)dx=(arctany-x)dy;
(Ⅲ)y’+2y=sinx;
(Ⅳ)e
y
y’-
=x
2
(Ⅴ)
(Ⅵ)(x
2
-3y
2
)x+(3x
2
-y
2
)
=0;
(Ⅸ)xdy-ydx=y
2
e
y
dy;
(Ⅹ)y’’+5y’+6y=e
x
;
(Ⅺ)y’’+9y=6cos3x.
选项
答案
(Ⅰ)原方程可改写为[*],这是一阶线性微分方程,用积分因子[*]=2(x-2),两边求积分即得通解 [*] 即 y=C(x-2)+(x-2)
3
,其中C是任意常数. [*] 两边求积分即得通解 [*] 即 x=Ce
-arctany
+arctany-1,其中C是任意常数. [*] (Ⅵ)题设方程为齐次微分方程,方程可改写成 [*] 这是一个变量可分离型方程,其通解为y(e
u
+u)=C.所以原微分方程的通解为[*]+x=C. (Ⅷ)因为y’cosy=(siny)’,令u=siny,则原微分方程化为 u’+u=x. 这是关于未知函数u(x)的一个一阶线性非齐次微分方程,其通解为 u=e
-x
(C+∫xe
x
dx)=Ce
-x
+x-1 所以原微分方程的通解为siny=Ce
-x
+x-1. (Ⅸ)当y≠0时,将原方程变为如下形式: [*] 所以原方程是一个全微分方程,其通解为 [*] (Ⅺ)对应的特征方程为λ
2
+9=(λ-3i)(λ+3i)=0[*]特征根为λ
1
=3i,λ
2
=-3i,由方程的非齐次项6cos3x可知,应设非齐次方程的特解具有形式y
*
=x(Acos3x+Bsin3x).计算可得 [*] 从而A=0,B=1.综合得通解y≡(C
1
+x)sin3x+C
2
cos3x.
解析
转载请注明原文地址:https://kaotiyun.com/show/7VD4777K
0
考研数学三
相关试题推荐
设随机变量X~F(m,n),令P{X>Fα(m,n))=α(0<α<1),若P(X<k)=α,则k等于().
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
设f1(x)为标准正态分布的概率密度f2(x)为[-1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足
设A是m×n阶矩阵,则下列命题正确的是().
已知级数an收敛,则下列级数中必收敛的是()
已知ξ1,ξ2是方程组(λE一A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量是().
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0x(x一t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是()
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
设求f’(x).
随机试题
卷弯原理的实质是连续不断的压弯。()
汪先生,38岁,因慢性阑尾炎入院,经2周的抗生素治疗后出现咳嗽、痰粘稠,X线显示肺部有炎性浸润性病变,白细胞总数及嗜中性粒细胞比例增高。此时的处理措施不正确的是()
刑罚裁量
公安工作所面临的形势和工作对象的复杂性,决定了公安工作具有()。
中华文化最大的特质是其浓郁的人文精神。从________的音形义相结合的汉字,到强调对现世和人生思考的中国哲学,从五千年文明赓续不绝、________,到儒释道三家交相融合,这些文化现象无一例外都展现出以人为本、自成体系、个性鲜明的中国作风和中国气派。填入
2011年9月国务院新闻办发表的《中国的和平发展》白皮书界定了中国核心利益范围。下列选项中属于国家核心利益的是
以下论断正确的是
以下计算是否正确?为什么?
TheWhiteHouseistheofficialresidenceofthePresidentoftheUnitedStates.Itwas【B1】______byJamesHoban,anIrishborn【
Baby-NamingTrendsA)Overthelastfiftyyears,Americanparentshaveradicallyincreasedthevarietyofnamestheygivetheirc
最新回复
(
0
)