首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解: (Ⅰ)(x-2)dy=[y+2(x-2)3]dx; (Ⅱ)(1+y2)dx=(arctany-x)dy; (Ⅲ)y’+2y=sinx; (Ⅳ)eyy’-=x2 (Ⅴ) (Ⅵ)(x2-3y2)x+(3x2-y2)=0;
求下列微分方程的通解: (Ⅰ)(x-2)dy=[y+2(x-2)3]dx; (Ⅱ)(1+y2)dx=(arctany-x)dy; (Ⅲ)y’+2y=sinx; (Ⅳ)eyy’-=x2 (Ⅴ) (Ⅵ)(x2-3y2)x+(3x2-y2)=0;
admin
2020-03-10
86
问题
求下列微分方程的通解:
(Ⅰ)(x-2)dy=[y+2(x-2)
3
]dx;
(Ⅱ)(1+y
2
)dx=(arctany-x)dy;
(Ⅲ)y’+2y=sinx;
(Ⅳ)e
y
y’-
=x
2
(Ⅴ)
(Ⅵ)(x
2
-3y
2
)x+(3x
2
-y
2
)
=0;
(Ⅸ)xdy-ydx=y
2
e
y
dy;
(Ⅹ)y’’+5y’+6y=e
x
;
(Ⅺ)y’’+9y=6cos3x.
选项
答案
(Ⅰ)原方程可改写为[*],这是一阶线性微分方程,用积分因子[*]=2(x-2),两边求积分即得通解 [*] 即 y=C(x-2)+(x-2)
3
,其中C是任意常数. [*] 两边求积分即得通解 [*] 即 x=Ce
-arctany
+arctany-1,其中C是任意常数. [*] (Ⅵ)题设方程为齐次微分方程,方程可改写成 [*] 这是一个变量可分离型方程,其通解为y(e
u
+u)=C.所以原微分方程的通解为[*]+x=C. (Ⅷ)因为y’cosy=(siny)’,令u=siny,则原微分方程化为 u’+u=x. 这是关于未知函数u(x)的一个一阶线性非齐次微分方程,其通解为 u=e
-x
(C+∫xe
x
dx)=Ce
-x
+x-1 所以原微分方程的通解为siny=Ce
-x
+x-1. (Ⅸ)当y≠0时,将原方程变为如下形式: [*] 所以原方程是一个全微分方程,其通解为 [*] (Ⅺ)对应的特征方程为λ
2
+9=(λ-3i)(λ+3i)=0[*]特征根为λ
1
=3i,λ
2
=-3i,由方程的非齐次项6cos3x可知,应设非齐次方程的特解具有形式y
*
=x(Acos3x+Bsin3x).计算可得 [*] 从而A=0,B=1.综合得通解y≡(C
1
+x)sin3x+C
2
cos3x.
解析
转载请注明原文地址:https://kaotiyun.com/show/7VD4777K
0
考研数学三
相关试题推荐
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
设随机事件A与B互不相容,0<0(A)<1,则下列结论中一定成立的是
极限().
设A为四阶非零矩阵,且r(A*)=1,则().
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0x(x一t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
设y=y(x)为微分方程2xydx+(x2一1)dy=0满足初始条件Y(0)=1的解,则为().
设函数f(x,y)可微分,且对任意的x,y都有,则使不等式f(x1,y1)>f(x2,y2)成立的一个充分条件是()
设常数,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则()
求下列积分。设f(x)=∫1xe-y2dy,求∫01x2f(x)dx;
随机试题
甲公司取得了热播电视剧《明天会更好》的独家网络直播权,赵某嫌该剧片头广告时间过长,开发出屏蔽该片头广告的软件,并在其社交主页上提供了专门的下载通道,受到网民追捧。随后赵某用此软件招商,播放乙公司的产品广告,收益颇丰。下列说法正确的是:
心肌通过等长自身调节来调节心脏的泵血功能,其主要原因是
与tRNA反密码子CAG配对的mRNA密码子是()
乳牙龋蚀的特点是
A.归脾汤B.当归地黄饮C.大补元煎D.八珍汤E.固阴煎治疗月经先后无定期肾虚证,应首选的方剂是
海关对享受特定减免税收优惠的进口货物的监管年限为6年的有()。
在“首届京剧旦角最佳演员”的评选中,梅兰芳、程砚秋、尚小云、()当选,被誉为京剧“四大名旦”。
__________反映了康有为早期的大同思想。
下列情形中,不成立共同犯罪,对行为人分别处理的有()。
【B1】【B8】
最新回复
(
0
)