首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 如图1.3.2.3所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f″′(x)dx
[2005年] 如图1.3.2.3所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f″′(x)dx
admin
2019-04-05
97
问题
[2005年] 如图1.3.2.3所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l
1
与l
2
分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫
0
3
(x
2
+x)f″′(x)dx.
选项
答案
因被积函数含有抽象函数的导数,可用分部积分法计算,且让函数导数进入微分号.再利用图形,求出相关数据算出结果. 先从图中获取计算积分所需的数据:f(3)=2,f(0)=0.从图中还可求出曲线y=f(x)在点(0,0)与(3,2)处的切线斜率: f′(0)=(4—0)/(2-0)=2, f′(3)=一(2—0)/(4—3)=一2. 由(3,2)是曲线y=f(x)的拐点知,f″(3)=0(拐点的必要条件).因被积函数含函数的导数,下用分部积分法求其值. ∫
0
3
(x
2
+x)f″′(x)dx=(x
2
+x)f″(x)∣
0
3
-∫
0
3
(2x+1)f″(x)dx =一∫
0
3
(2x+1)f″(x)dx=-(2x+1)f′(x)∣
0
3
+2∫
0
3
f′(x)dx =一[7×(一2)一2]+2∫
0
3
f′f(x)dx=16+2f(x)∣
0
3
=16+4=20.
解析
转载请注明原文地址:https://kaotiyun.com/show/7WV4777K
0
考研数学二
相关试题推荐
在半径为a的半球内,内接一长方体,问各边长多少时,其体积最大?
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
求齐次线性方程组的基础解系.
解下列微分方程:(Ⅰ)y"-7y’+12y=x满足初始条件的特解;(Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)y"’+y"+y’+y=0的通解.
求下列函数的带皮亚诺余项至括号内所示阶数的麦克劳林公式:(Ⅰ)f(x)=excosx(x3);(Ⅱ)f(x)=(x3).(Ⅲ)f(x)=,其中a>0(x2).
求下列变限积分函数的导数:(Ⅰ)F(x)=,求F’(x)(x≥0);(Ⅱ)设f(x)处处连续,又f’(0)存在,F(x)=,求F"(x)(-∞<x<+∞).
位于上半平面向上凹的曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与的乘积成正比,求该曲线方程.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
[2009年](I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2012年]设函数f(x)=(ex一1)(e2x一2)…(enx-n),其中n为正整数,则f'(0)=().
随机试题
张某系某基层法院陪审员,可以参与审判下列哪些案件?(卷二真题试卷第74题)
Medicalstudiesshowthatonlytwotofivepercentoftheobesemanagetoshedunwantedpoundspermanently.Therest,afterinte
对于压力感受性反射的描述,恰当的是
A.改变宫腔内环境,妨碍受精卵着床B.杀精子或改变精子功能C.抑制排卵D.改变宫颈粘膜性状,不利于精子穿透E.阻止精子进入宫腔
某500kV架空送电线路中,一直线塔的前侧档距为440m,后侧档距为560m,相邻两塔的导线悬点均高于该塔,下面的说法()是不正确的。
下列选项中,不属于《保险营销员管理规定》中规定的保险营销员应当向客户明确说明的信息的是( )。
下列关于期货交易所的解散情形,表述错误的是()。
1998年,下列四个国家中,哪个国家石油消费量最小?()
FromPonzitoMadoff Theyearwas1920.ThecountrywastheUnitedStatesofAmerica.Theman’snamewasCharlesPonzi.Ponzi
Socialdistancemay【66】af______howopenlyemployeesspeakabouttheirwork.Peopleofthesame【67】r______maytalkfranklytoone
最新回复
(
0
)