首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0; (Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0; (Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
admin
2014-11-26
64
问题
(Ⅰ)设α
1
,α
2
,…,α
n
为n个n维线性无关的向量,且β与α
1
,α
2
,…,α
n
正交.证明:β=0; (Ⅱ)设α
1
,α
2
,…,α
n-1
为n一1个n维线性无关的向量,α
1
,α
2
,…,α
n-1
与非零向量β
1
,β
2
正交,证明:β
1
,β
2
线性相关.
选项
答案
(Ⅰ)令[*] 因为α
1
,α
2
,…,α
n
线性无关,所以r(A)=n.又因为α
1
,α
2
,…,α
n
与β正交,所以Aβ=0,从而r(A)+r(β)≤n,注意到r(A)=n,于是r(β)=0,即β为零向量. (Ⅱ)方法一:令[*] B=(β
1
,β
2
),因为α
1
,α
2
,…,α
n-1
线性无关,所以r(A)=n一1.又因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以AB=0,从而r(A)+r(B)≤n,注意到r(A)=n一1,所以r(B)≤1,即β
1
,β
2
线性相关. 方法二:令[*] 因为α
1
,α
2
,…,α
n-1
线性无关,所以r(A)=n一1.因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以β
1
,β
2
为方程组AX=0的两个解,而方程组AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/7l54777K
0
考研数学一
相关试题推荐
设A为n阶矩阵,列向量组α1,α2,…,αn线性无关,则Aα1,Aα2,Aαn线性无关的充要条件是________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
用配方法将二次型f(x1,x2,x3)=x12-3x32-2x1x2-2x1x3-6x2x3化为规范形,并写出变换矩阵.
设3阶矩阵,α=[a,1,1]T,已知Aα与α线性相关,则a=________.
利用极坐标计算二重积分ln(1+x2+y2)dxdy,其中D是由圆周x2+y2=1及坐标轴所围的位于第一象限的闭区域.
设函数y=y(x)满足微分方程y’’一3y’+2y=2ex,其图形在点(0,1)处的切线与曲线g(x)=x2一x+1在该点处的切线重合,求函数y的解析表达式.
已知y1=xex+e—x是某二阶非齐次线性微分方程的特解,y2=(x+1)ex是相应二阶齐次线性微分方程的特解,求此非齐次线性微分方程.
微分方程y”一6y’+8y=ex+e2x的一个特解应具有形式(其中a,b为常数)().
已知随机变量X的概率密度为f(x)=,求(1)常数a,b的值;(2)。
箱内有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机的取出2个球,记X为取出的红球个数,Y为取出的白球个数.求随机变量(X,Y)的概率分布;
随机试题
计算机网络按传输介质的不同可以划分为________和无线网。
下列现象中不属于民事法律事实中行为的是()
新生儿肺透明膜病,哪项是错误的
女,36岁,已婚,因月经量增多伴进行性痛经3年来就诊。妇科检查:宫颈轻度糜烂,子宫2个月大小,质硬,活动度差,两侧附件增厚,B型超声检查提示:子宫增大,回声不均。其诊断应考虑为女,绝经10年,腹胀2个月来就诊。妇科检查:宫颈萎缩,子宫似正常大小,边界欠
( )不是施工安全控制的特点。
下列业务中,应该填制现金收款凭证的是()。
奥苏贝尔认为,学校主要应采用通过________进行有意义的接受学习。
延安整风
设A为m×n矩阵,B为n×m矩阵,则
ResumeNameinfull:LiMaohanGender:FemaleDateofbirth:July.26th,1973Nationality:ChinaMaritalStatus:SingleWorkEx
最新回复
(
0
)