首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0; (Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0; (Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
admin
2014-11-26
70
问题
(Ⅰ)设α
1
,α
2
,…,α
n
为n个n维线性无关的向量,且β与α
1
,α
2
,…,α
n
正交.证明:β=0; (Ⅱ)设α
1
,α
2
,…,α
n-1
为n一1个n维线性无关的向量,α
1
,α
2
,…,α
n-1
与非零向量β
1
,β
2
正交,证明:β
1
,β
2
线性相关.
选项
答案
(Ⅰ)令[*] 因为α
1
,α
2
,…,α
n
线性无关,所以r(A)=n.又因为α
1
,α
2
,…,α
n
与β正交,所以Aβ=0,从而r(A)+r(β)≤n,注意到r(A)=n,于是r(β)=0,即β为零向量. (Ⅱ)方法一:令[*] B=(β
1
,β
2
),因为α
1
,α
2
,…,α
n-1
线性无关,所以r(A)=n一1.又因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以AB=0,从而r(A)+r(B)≤n,注意到r(A)=n一1,所以r(B)≤1,即β
1
,β
2
线性相关. 方法二:令[*] 因为α
1
,α
2
,…,α
n-1
线性无关,所以r(A)=n一1.因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以β
1
,β
2
为方程组AX=0的两个解,而方程组AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/7l54777K
0
考研数学一
相关试题推荐
用配方法将二次型f(x1,x2,x3)=x12-3x32-2x1x2-2x1x3-6x2x3化为规范形,并写出变换矩阵.
设证明当k>2时,Ak0的充分必要条件为A2=0.
设函数f(x,y)连续,则∫12dy∫1yf(x,y)dx+∫12dy∫y4—yf(x,y)dx=().
已知函数f(x,y)在点(0,0)的某个邻域内连续,且33=一2,则().
设函数f(x)≥0在[1,+∞)上连续,若曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形的面积为S(t)=t2f(t)一1.
求二阶常系数线性微分方程y’’+λy’=2x+1的通解,其中λ为常数.
计算:,其中D是由圆弧(x>0)与直线y=x,y=0所围成的区域.
已知y=f(x)是微分方程xy’一y=满足初值条件f(1)=0的特解.则∫01f(x)dx=________.
随机试题
intx=2,y;则表达式y=x+5,x+y的值是______。
A.行气止痛,温肾B.行气止痛,消食C.行气导滞,利水D.行气止痛,杀虫川楝子的功效是
患者眼睑水肿,身发疮痍,恶风发热,舌红苔薄黄,脉浮数。其证候是
患者最可能诊断为患者的意识状态为
冲突:解决:和谐
某房主用同一房地产作抵押贷款,先后与工商行、建行、交行签订了抵押合同,工商行、交行、建行与房主分别先后到房地产管理部门办理了抵押登记手续。房主无力偿还贷款,处分抵押物时,银行受偿顺序为()。
我国的国家结构形式是统一的多民族国家。()
设f(x)有连续的导数,f(0)=0,f’(0)≠0,F(x)=∫0x(x2一t2)f(t)dt,且当x→0时,F’(x)与xk是同阶无穷小,则k等于()
Youcouldbe______manydangersbytravelingaloneinthatarea.
Fiftyyearsago,mostpeople’sdailylevelsofactivitywereequivalenttowalkingthreetofivemilesaday.Today,the(1)_____
最新回复
(
0
)