首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0; (Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0; (Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
admin
2014-11-26
43
问题
(Ⅰ)设α
1
,α
2
,…,α
n
为n个n维线性无关的向量,且β与α
1
,α
2
,…,α
n
正交.证明:β=0; (Ⅱ)设α
1
,α
2
,…,α
n-1
为n一1个n维线性无关的向量,α
1
,α
2
,…,α
n-1
与非零向量β
1
,β
2
正交,证明:β
1
,β
2
线性相关.
选项
答案
(Ⅰ)令[*] 因为α
1
,α
2
,…,α
n
线性无关,所以r(A)=n.又因为α
1
,α
2
,…,α
n
与β正交,所以Aβ=0,从而r(A)+r(β)≤n,注意到r(A)=n,于是r(β)=0,即β为零向量. (Ⅱ)方法一:令[*] B=(β
1
,β
2
),因为α
1
,α
2
,…,α
n-1
线性无关,所以r(A)=n一1.又因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以AB=0,从而r(A)+r(B)≤n,注意到r(A)=n一1,所以r(B)≤1,即β
1
,β
2
线性相关. 方法二:令[*] 因为α
1
,α
2
,…,α
n-1
线性无关,所以r(A)=n一1.因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以β
1
,β
2
为方程组AX=0的两个解,而方程组AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/7l54777K
0
考研数学一
相关试题推荐
设A为n阶矩阵,证明二次型f(x1,x2,…,xn)=xTATAx正定的充要条件是r(A)=n.
设A是3阶矩阵,b=[9,18,-18]T,方程Ax=b有通解k1[-2,1,0]T+k2[2,0,1]T+[1,2,-2]T,其中k1,k2是任意常数,求A及A100.
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,k是任意常数,则Ax=0的通解必定是().
若非齐次线性方程组Ax=b有两个互不相等的解,则方程组().
利用极坐标计算二重积分ln(1+x2+y2)dxdy,其中D是由圆周x2+y2=1及坐标轴所围的位于第一象限的闭区域.
设函数f(x,y)连续,则∫12dy∫1yf(x,y)dx+∫12dy∫y4—yf(x,y)dx=().
设f(x,y)为连续函数,则=().
设f(u)具有二阶连续导数,且
试在微分方程=2y一x的一切解中确定一个解y=y(x),使得曲线y=y(x)与直线x=1,x=2及y=0所围平面图形绕y=0旋转一周的旋转体体积最小。
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2x-y)+g(x,xy),求
随机试题
简述信用证欺诈的情形。
犬,车祸后大小便失禁,两后肢不能站立,针刺前肢敏感,但两后肢无反应,肛门反射消失。最可能的损伤部位是()
面色淡白无华,唇舌色淡,多属( )。
骨折的特有体征是()
下列属于“其他货币资金”核算内容的有()。
我国期货交易所的开盘价由集合竞价产生,集合竞价采用最大成交量原则。()
2011年5月19日是我国第一个“中国旅游日”,主题是“读万卷书,行万里路”。()
“今天天气好热啊”中的“啊”应该读成_______。(复旦大学2014)
经济增长方式从粗放型向集约型转变,要靠深化经济体制改革,逐步形成()
DBMS对数据库数据的检索、插入、修改和删除操作的功能称为
最新回复
(
0
)