首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b1,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为:(b1,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2019-03-21
68
问题
已知线性方程组
的一个基础解系为:(b
1
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是B的n个行向量的转置向量.因此,由(Ⅰ)的基础解系可知 AB
T
=O 转置即得 BA
T
=O 因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为n(B的行向量组线性无关),故(Ⅱ)的解空间的维数为2n一r(B)=2n一n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,即2n 一 r(A)=n,故r(A)=n,于是可知A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
2,2n
)
T
其中c
1
,c
2
,…,c
n
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7mV4777K
0
考研数学二
相关试题推荐
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为(1,2.1)T,求a,Q.
设η1,…,ηs是非齐次线性方程组AX=b的一组解,则志k1η1+…+ksηs为方程组AX=b的解的充分必要条件是_______
设当x→0时,etanx一ex与xn是同阶无穷小,则n为()
计算下列反常积分(广义积分)的值:
在半径为R的圆的一切内接三角形中,求出其面积最大者.
设函数f(x)在区间[a,b]上连续,且恒大于零,证明:
将极坐标变换后的二重积分f(rcosθ,rsinθ)rdrdθ的如下累次积分交换积分顺序:其中F(r,θ)=f(reosθ,rsinθ)r.
设f(χ)在[0,1]三阶可导,且f(0)=f(1)=0.设F(χ)=χ2f(χ),求证:在(0,1)内存在c.使得F″′(c)=0.
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ2=λ3=5对应的线性无关的特征向量为_______.
数列1,,…的最大项为_______.
随机试题
患者,男,20岁。反复发作胸闷,气急,咳嗽1年。查体:两肺满布哮鸣音。应首先考虑的是
风热咳嗽的宜选用方
男,30岁。慢性肾炎,浮肿少尿1月,呕吐3天,血压160/90mmHg,两肺底散在水泡音,颈静脉怒张,BUN40mmol/L,血钾6.5mmol/L,最宜采用()
下列关于特殊管理药品的说法,正确的是()
A.<130mmol/LB.120~140mmol/LC.130~150mmol/LD.150~180mmoL/LE.>150mmol/L.婴儿腹泻低渗性脱水的血钠浓度为()
估价不同于定价。估价只是为当事人提供公平可信的价格参考依据,并不取决当事人的民事权利,而定价往往是当事人的行为。房地产的()应由当事人自己决定,当事人出于某种目的,可以使其成交价格高于或低于正常价格。
奈普科技公司系江海市大型股份制企业。市国税局稽查局对奈普科技公司的纳税情况依法实施检查,发现奈普科技公司2007年6月至12月存在未按规定申报纳税的情况。市国税局稽查局根据税收法律、法规和有关规定,作出《税务处理决定书》,责令奈普科技公司补缴税款3260.
下面是一位高中英语教师在进行语法教学时所展示的课件。Page1(1)Ithink(that)it’sveryinteresting.(2)Shesaidthatshewouldleavethere
中学生小张认为遵守交通法规是人人应尽的责任和义务。根据柯尔伯格的道德发展阶段理论,小张的道德判断处于()
在立体主义艺术家中,尝试把立体主义和写实手法相结合,表现机械的美和力的是()。
最新回复
(
0
)