首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
admin
2017-04-24
85
问题
设α
1
,α
2
,…,α
s
均为n维列向量,A是m×n矩阵,下列选项正确的是
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
答案
A
解析
若α
1
,α
2
,…,α
s
线性相关,则存在一组不全为零的常数k
1
,k
2
,…,k
s
,使得
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
两端左乘矩阵A,得
k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0
因k
1
,k
2
,…,k
s
,不全为零,故由线性相关的定义,即知向量组Aα
1
,Aα
2
,…,Aα
s
线性相关.
用排除法
若A=0为零矩阵,则组Aα
1
,Aα
2
,…,Aα
s
均为零向量,从而组Aα
1
,Aα
2
,…,Aα
s
线性相关,于是选项(B)、(D)均不对,若A=
,则α
1
,α
2
线性无关,且Aα
1
=α
1
与Aα
2
=α
2
线性无关,故选项(C)也不对,所以只有选项(A)正确.
转载请注明原文地址:https://kaotiyun.com/show/Yyt4777K
0
考研数学二
相关试题推荐
证明:当zx>0时,ln(1+1/x)>1/(x+1).
求差分方程yx+1+2yx=x2+4x的通解。
求微分方程(x-2xy-y2)+y2=0的通解。
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式证明当x≥0时,不等式e-x≤f(x)≤1成立。
设f(u,v)具有连续偏导数,且满足f’u(u,v)+f’v(u,v)=uv,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
设在点x=1处可导,求a,b的值.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形.
随机试题
目前发病率最高的肺癌病理类型是()(2010年)
分部工程必须全部分项工程均合格,抽样检测资料齐全并符合要求,观感质量符合要求后,应由()填写分部工程验收表。
地下管线工程施工中,常用的造价较低、进度较快、非开挖的施工技术有( )。
路基工程施工质量控制中,相关专业工序之间的交接检验应经()检查认可,未经检查或检查不合格的不得进行下道工序施工。
【2013年山西孝义.填空】教师是学校教育活动的_________、_________、_________。
A.Ithinkthebigdifferenceis,B.Whathaveyoudonetomakethisyours?C.howtheylookintheOvalOffice.D.youdon’tn
甲公司将一工程发包给乙建筑公司,经甲公司同意,乙公司将部分非主体工程分包给丙建筑公司,丙公司又将其中一部分分包给丁建筑公司。后丁公司因工作失误致使工程不合格,甲公司欲索赔。对此,下列说法正确的是
=_________。
在考生文件夹下打开文档WORD.DOCX。某高校学生会计划举办一场“大学生网络创业交流会”的活动,拟邀请部分专家和老师给在校学生进行演讲。因此,校学生会外联部需制作一批邀请函,并分别递送给相关的专家和老师。请按如下要求,完成邀请函的制作。根据页面布局
深圳某科技公司的人事经理需要制作一个演示文稿,主要用于在会议开始前或会议休息时间向公司同事传达公司的办公理念。请按照如下要求完成该演示文稿的制作:为了实现幻灯片可以在展台自动放映,设置每张幻灯片的自动放映时间为10秒钟。
最新回复
(
0
)