首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn.Aαn=0. 证明:α1,α2,…,αn线性无关;
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn.Aαn=0. 证明:α1,α2,…,αn线性无关;
admin
2018-05-25
62
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
.Aα
n
=0.
证明:α
1
,α
2
,…,α
n
线性无关;
选项
答案
令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+…+x
n
Aα
n
=0=>x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0 x
1
Aα
2
+x
2
Aα
3
+…+x
n-1
Aα
n
=0=>x
1
α
3
+x
2
α
4
+…+x
n-2
α
n
=0 … x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
1
=…=x
n
=0,所以α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/7oW4777K
0
考研数学三
相关试题推荐
若f(x,y)为关于x的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有f(x,y)dxdy=_________.
设m和n为正整数,a>0,且为常数,则下列说法不正确的是()
一商店经销某种商品,每周进货量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润500元,试计算此商店经销
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值。
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
已知线性方程(1)a,b为何值时,方程组有解;(2)方程组有解时,求出方程组的导出组的基础解系;(3)方程组有解时,求出方程组的全部解.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
证明:方阵A与所有同阶对角阵可交换的充分必要条件是A是对角阵.
设A是主对角元为0的四阶实对称阵,E是4阶单位阵,B=,且E+AB是不可逆的对称阵,求A.
设矩阵A=有三个线性无关特征向量,λ=2是A的二重特征值,试求可逆阵P,使得P-1AP=A,A是对角阵.
随机试题
X62W型铣床的()采用了反接制动的停车方法。
________是实行半总统半议会制决策体制的典型国家;________是实行委员会制的典型国家。
某公司原有资本1000万元,其中债务资本400万元(每年负担利息30万元),普通股资本600万元(发行普通股12万股,每股面值50元),企业所得税税率为30%。由于扩大业务,需追加筹资300万元,其筹资方式有三个:一是全部发行普通股,增发6万股,每股面值5
下列哪项不是婴儿急性上呼吸道感染的并发症()
我国扶植中小企业政策规定:凡符合国家产业政策技术改造项目的国有设备投资,按()比例抵免企业所得税。
马克思在研究战争与和平的关系时指出:“战争比和平发达得早;某些经济关系,如雇佣劳动、机器等等,怎样在战争和军队等等中比在资产阶级社会内部发展得早。生产力和交往关系的关系在军队中也特别显著。”这一论述说明了一个重要观点,即()。
《奥格斯堡和约》
基本以下题干,回答问题在某一演出中,全部独唱演员必须演唱7首歌,每首歌只允许唱1次。歌从1到7连续编号。参加该演出的是一演唱组的3个成员张、刘和王,他们必须遵守以下规则:演唱必须从第1首歌开始,按7首歌的编号连续进行,张和王既可以唱奇数号
HowtoSpeakGoodEnglishI.IntroductionA.Manylearnershavingdifficultyincommunicatingduetothelackof【T1】______andr
Wellknownforher________andtough-mindedmoviecriticism,columnistPaulinealsopossessesanextensiveknowledgeofthetec
最新回复
(
0
)