首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn.Aαn=0. 证明:α1,α2,…,αn线性无关;
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn.Aαn=0. 证明:α1,α2,…,αn线性无关;
admin
2018-05-25
77
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
.Aα
n
=0.
证明:α
1
,α
2
,…,α
n
线性无关;
选项
答案
令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+…+x
n
Aα
n
=0=>x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0 x
1
Aα
2
+x
2
Aα
3
+…+x
n-1
Aα
n
=0=>x
1
α
3
+x
2
α
4
+…+x
n-2
α
n
=0 … x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
1
=…=x
n
=0,所以α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/7oW4777K
0
考研数学三
相关试题推荐
(1)设D={(x,y)|a≤x≤b,c≤y≤d),若fˊˊxy与fˊˊyx在D上连续.证明:(2)设D为xOy平面上的区域,若fˊˊxy与fˊˊyx都在D上连续.证明:fˊˊxy与fˊˊyx在D上相等.
设函数f(x)在[a,b]上连续,在(a,b)上可导且f(a)≠f(b).证明:存在η,ξ∈(a,b),使得.
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
试证明:曲线y=恰有三个拐点,且位于同一条直线上.
设向量组(Ⅰ)α1,α2,…,αs线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βi(i=1,2,…,t)不能由(Ⅰ)α1,α2,…,αs线性表出,则向量α1,α2,…,αs,β1,β2,…,βs()
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
随机试题
下列哪些疾病不属于自身免疫性疾病
根据现行规范规定,陶质卫生陶瓷的吸水率最大值是()。
宴会营养食谱的设计,要以客人的就餐标准为依据,以科学合理的营养搭配为主要目标。()
道德是诉诸人们口头语言和行为模仿而历代流传,以_______方式存在着。
颅脑MRA技术不包括
甲状腺分泌过多时可引起
A市农产甲于2006年3月1日与乙公司订立合同,出售自己饲养的活鸡1万只,并约定乙公司应在3月21日前支付首期价款,甲从4月1日起分批交付鸡,交付完毕后乙公司付清余款。3月20日,乙公司得知该市发现了禽流感,即致电向甲询问。甲称他的鸡没有出现禽流感。乙公司
材料一:党的十六大报告指出:经过全党和全国各族人民的共同努力,我们胜利实现了现代化建设“三步走”战略的第一步、第二步目标,人民生活总体达到了小康水平。必须看到,我国正处于并将长期处于社会主义初级阶段,现在达到的小康还是低水平的、不全面的、发展很不平衡的小康
简述EDI,IP地址和计算机网络的含义?如果生产厂家接到EDI订单后,EDI系统自动处理该订单,检查其合法性和完备性,回复确认订单,通知本单位的生产管理系统或CIM系统,以便安排生产,并同时向供应商发出EDI订单订购原材料或零件,向交通运输单位发出预订
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。在考生文件夹下打开文档word.docx,按照要求完成下列操作并以该文件名(Word.docx)保存文档。某
最新回复
(
0
)