首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0; (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0; (2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=
admin
2019-08-23
25
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).
证明:(1)ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0;
(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
选项
答案
(1)令F(x)=∫
0
x
f(t)dt, F’(x)=f(x). ∫
0
2
f(t)dt=F(2)一F(0)=F’(c)(2—0)=2f(c),其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M, [*] 由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[*]即f(2)+f(3)=2f(x
0
), 于是f(0)=f(c)=f(x
0
), 由罗尔定理,存在ξ
1
∈(0,c)[*](0,3),ξ
2
∈(c,x
0
)[*](0,3),使得f’(ξ
1
)=f’(ξ
2
)=0. (2)令φ(x)=e
-2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,3),使得φ’(ξ)=0, 而φ’(x)=e
-2x
[f"(x)一2f’(x)]且e
-2x
≠0,故f"(ξ)一2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/7qc4777K
0
考研数学一
相关试题推荐
求曲线Γ:在点M0(1,1,3)处的切线与法平面方程。
判别下列级数的敛散性:
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;
微分方程y"-y’-2y=e2x的通解为_____________。
设L是平面单连通有界区域σ的正向边界线,且L不经过原点。n0是L上任一点(x,xy)处的单位外法线向量。设平面封闭曲线L上点(x,y)的矢径r=xi+yj,r=|r|;θ是n0与r的夹角,试求
设A,B均为n阶对称矩阵,则不正确的是()
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
设幂级数的收敛半径为3,则幂级数的收敛区间为________。
随机试题
A.银翘散B.川芎茶调散C.避瘟散D.九分散E.蛇胆川贝散按药物性质分类,属于含低共熔成分散剂的是
2019年6月下旬,电解铜的价格约是无缝钢管的:
领导权变论认为领导者自身的特点包括
BrazilsPopulationBrazilhasbecomeoneofthedevelopingcountrieswithgreatsuccessesat【B1】______populationgrowth—but
在护理骨牵引患者时,如牵引过度可引起
门窗所使用的密封胶条宜采用再生胶条。()
2007年2月16日,受天星商贸发展公司委托,某评估公司对其拥有的部分不动产进行估价进行核算。据委托方初步说明,估价对象土地于2003年2月16日通过出让方式取得,当时总面积为4908平方米,2004年3月20日将批发零售部分转让出复查,住宿餐饮部分200
转账支票可用于单位和个人的各种款项结算,支票上印有“转账”字样,可以用于转账,或者支取现金。()
设函数f(x)连续,且f’(0)>0,则存在δ>0,使得
当线性表采用顺序存储结构实现存储时,其主要特点是【】。
最新回复
(
0
)